Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Diện tích tam giác ABC là:
6.8:2=24 (cm2)
Áp dụng định lí Py-ta-go cho tam giác ABC, ta có:
AB2+AC2=BC2
=>62+82=BC2=>36+64=BC2=>BC=10 (cm)
Đường cao AH dài là:
24.2:10=4,8 (cm)
Áp dụng định lí Py-ta-go cho tam giác ABH, ta có:
AH2+BH2=AB2
=>4,82+BH2=36
=>23,04+BH2=36
=>BH2=12,96=>BH=3,6 (cm)
Độ dài CH là:
10-3,6=6,4 (cm)
Đáp số: AH: 4,8 cm; BH: 3,6 cm; CH: 6,4 cm; BC: 10 cm
\(\text{Áp dụng định lý Pytago ta có:}\)
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=6^2+8^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10\left(\text{Vì BC}>0\right)\)
\(S_{\Delta ABC}\text{ là}:\)
\(\frac{6.8}{2}=24\)
\(\text{Vì AH là đường cao hạ từ đỉnh A và BC là đáy tương ứng với đường cao AH nên}\)
\(S_{\Delta ABC}=\frac{BC.AH}{2}=\frac{10.AH}{2}=24\)
\(\Rightarrow AH=24:5=4,8\)
\(\text{Áp dụng định lý Pytago ta có:}\)
\(AB^2=AH^2+BH^2\)
\(\Rightarrow6^2=4,8^2+BH^2\)
\(BH^2=12.96\)
\(BH=3,6\)
\(\text{CH thì tính tương tự như BH nha}\)