K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

a) Rút gọn thu được B = 4 x ( 2 + x ) ( 2 − x ) ( 2 + x ) : x − 3 x ( 2 − x ) = 4 x 2 x − 3 với x ≠     ± 2 ;    x ≠ 0 ;   x ≠ 3  

b) 4 x 2 x − 3 < 0 ⇔ x − 3 < 0 ⇔ x < 3 ;  

Kết hợp điều kiện được 0 < x < 3; x ≠ ± 2.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

18 tháng 4 2023

`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`

Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`

`b)` Với `x >= 0,x ne 4` có:

`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[\sqrt{x}-2]/[\sqrt{x}-3]`

`c)` Với `x >= 0,x ne 4` có:

`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`

Có: `C >= 1`

`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`

`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`

`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`

  Vì `x >= 0=>\sqrt{x} >= 0`

  `=>\sqrt{x}-3 > 0`

`<=>x > 9` (t/m đk)

loading...  loading...  

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3            a, Rút gọn A.            b, Tìm các giá trị của x để A = 3Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2            a, Rút gọn biểu thức,            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 ,...
Đọc tiếp

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3

            a, Rút gọn A.

            b, Tìm các giá trị của x để A = 3

Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2

            a, Rút gọn biểu thức,

            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.

Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3

            a, Rút gọn biểu thức A.

            b, Tính giá trị của A khi x=5

            c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.

Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2

            a, Rút gọn A.

            b, Tính giá trị của A khi x = -4

            c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.

1

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

6 tháng 12 2021

\(a.A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\\ \Rightarrow A=\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ \Rightarrow A=\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\\ \Rightarrow A=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

b, thay x=1\(\Rightarrow A=\dfrac{-4}{\left(1-2\right)\left(1+2\right)}=\dfrac{-4}{-1.3}=\dfrac{-4}{-3}=\dfrac{4}{3}\)

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

19 tháng 11 2021

\(a,ĐK:x\ne0;x\ne1;x\ne\pm2\\ b,A=\left[\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{\left(2-x\right)\left(x+2\right)}\right]\cdot\dfrac{x\left(2-x\right)}{x-1}\\ A=\dfrac{x^2+4x+4-x^2+4x-4+4x^2}{\left(2-x\right)\left(x+2\right)}\cdot\dfrac{x\left(2-x\right)}{x-1}\\ A=\dfrac{4x\left(x+1\right)\cdot x}{\left(x+2\right)\left(x-1\right)}=\dfrac{4x^2}{x+2}\)

a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-1}{x-2}\)

b: Khi x=1/2 thì \(B=\dfrac{-1}{\dfrac{1}{2}-2}=\dfrac{2}{3}\)

Khi x=-1/2 thì B=2/5

c: Để B nguyên thì \(x-2\in\left\{1;-1\right\}\)

hay \(x\in\left\{3;1\right\}\)

8 tháng 3 2022

a, đk : x khác -2 ; 2 

\(B=\left(\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)

\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{1}{2-x}\)

b, Ta có \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2};x=-\dfrac{1}{2}\)

Với x = 1/2 ta được \(B=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)

Với x = -1/2 ta được \(B=\dfrac{1}{2+\dfrac{1}{2}}=\dfrac{2}{5}\)

c, \(\dfrac{1}{2-x}\Rightarrow2-x\inƯ\left(1\right)=\left\{\pm1\right\}\)

2-x1-1
x13

 

26 tháng 2 2020

\(a,P=\frac{x+2}{x-2}+\frac{x}{x+2}-\frac{4}{x^2-4}\)

\(P=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)

\(P=\frac{x^2+4x+4+x^2-2x-4}{x^2-4}\)

\(P=\frac{2x^2+2x}{x^2-4}\)

\(P=\frac{2x^2+2x}{x^2-4}\)               (1)

\(b,x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)

thay vào (1) ta có : 

\(P=\frac{2\cdot3^2+2\cdot3}{3^2-4}=\frac{24}{5}\)