Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{x+9}{x^2+3x-4}+\frac{x+12}{x^2-5x+4}+\frac{x-5}{x^2-1}\)
\(=\frac{x+9}{\left(x-1\right)\left(x+4\right)}+\frac{x+12}{\left(x-1\right)\left(x-4\right)}+\frac{x-5}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{ }{ }\)
a, Rút gọn Biểu thức:
A=\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
= \(\left(\dfrac{x+2}{2x-4}+\dfrac{-x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
= \(\left(\dfrac{x+2+-x-2}{2x-4+2x+4}\right):\dfrac{2x}{x2+2x}\)
= 0 \(:\dfrac{2x}{x2+2x}\)
b, \(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
Thay tất cả x= -4
=> \(\left(\dfrac{-4+2}{2-4-4}-\dfrac{-4-2}{2-4+4}\right):\dfrac{2.-4}{-4.2+2.-4}\)
= -16 : \(\dfrac{1}{3}\)
= -18
a, \(Đkxđ:x\ne\pm2\)
Ta có: \(A=\frac{x^2}{x^2-4}-\frac{x}{x-2}+\frac{2}{x+2}\)
\(=\frac{x^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-x^2-2x+2x-4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{-4}{\left(x+2\right)\left(x-2\right)}\)
b, Thay \(x=1\) vào biểu thức \(A\) ta được:
\(A=\frac{-4}{\left(1-2\right)\left(1+2\right)}=\frac{-4}{-1.3}=\frac{4}{3}\)
Vậy ............................
a) Rút gọn thu được B = 4 x ( 2 + x ) ( 2 − x ) ( 2 + x ) : x − 3 x ( 2 − x ) = 4 x 2 x − 3 với x ≠ ± 2 ; x ≠ 0 ; x ≠ 3
b) 4 x 2 x − 3 < 0 ⇔ x − 3 < 0 ⇔ x < 3 ;
Kết hợp điều kiện được 0 < x < 3; x ≠ ± 2.