Trong không gian Oxyz cho hai đường thẳng d 1 : x − 3 − 1 = y − 3 − 2 = z + 2 1 , d 2 : x − 5 − 3 = y + 1 2 = z − 2 1 và mặt phẳng P : x + 2 y + 3 z − 5 = 0 . Đường thẳng vuông góc với (P) cắt d 1 và d 2 có phương trình là
A. x − 1 1 = y + 1 2 = z 3 .
B. x − 2 1 = y − 3 2 = z − 1 3 .
C. x − 3 1 = y − 3 2 = z + 2 3 .
D. x − 1 3 = y + 1 2 = z 1 .
Đáp án A.
Giả sử đường thẳng d cắt d 1 , d 2 lần lượt
M , N ⇒ M 3 − t 1 ; 3 + 2 t 1 ; − 2 + t 1 , N 5 − 3 t 2 ; − 1 + 2 t 2 ; 2 + t 2
Ta có
M N → = t 1 − 3 t 2 + 2 ; 2 t 1 + 2 t 2 − 4 ; − t 1 + t 2 + 4
và n p → = 1 ; 2 ; 3
Mà d vuông góc với P nên
M N → = k n p → ⇒ t 1 − 3 t 2 + 2 = k 2 t 1 + 2 t 2 − 4 = 2 k − t 1 + t 2 + 4 = 3 k ⇔ t 1 = 2 t 2 = 1 k = 1 ⇒ M 1 ; − 1 ; 0 N 2 ; 1 ; 3
Ta có M N → = 1 ; 2 ; 3 ⇒ d : x − 1 1 = y + 1 2 = z 3 .