tìm các số tự nhiên a lớn nhất biết 480 chia hết cho a và 720 chia hết cho a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
420 chia hét cho a, 700 chia hét cho a và a lớn nhất
=>a là ƯCLN(420, 700)
Ta có:
420 = 4 . 105 = 4 . 5 . 21 = 3 . 4 . 5 . 7;
700 = 7 . 100 = 4 . 7 . 25 = 4 . 5^2 . 7.
=> ƯCLN(420, 700) = 4 . 5 . 7 = 140
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
- Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99.
- Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát.
- Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số).
- Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
- ABC chia hết cho 9.
- A + C chia hết cho 5.
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
- Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương).
- Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15.
- Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9.
- Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990.
- Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
Ta có: 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN (3, 4, 5, 6) = 22.3.5 = 60.
Do đó, BC(3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; 360; 420; 480; 540; 600; 660; 720; 780; 840; 900; 960; 1020; ...}
Số lớn nhất có ba chữ số chia hết cho 3, 4, 5, 6 là 960.
ta có x chia hết cho 12;15;18
suy ra x thuộc BC (12;15;18)
12= 2 mũ 2 nhân 3
15=3.5
18=2 nhân 3 mũ 3
BCNN (12;15;18)= 2 mũ 2 nhân 3 mũ 2 nhân 5 = 180
suy ra BC (12;15;18) = B (180) = {0;180;360;540;720;1080;1260;1800;1980,...}
mà x nhỏ nhất có 4 chữ số
suy ra x = 1080
Đáp án:
240
Giải thích các bước giải:
Vì 480 ⁝ a và 720 ⁝ a nên a là nên a là ước chung của 480 và 720
Mà a lớn nhất nên a là ƯCLN(480 và 720)
Ta có:
480=2^5.3.5
720=2^4 . 3^2 .5
Ta chọn ra các thừa số nguyên tố chung là:2,3 và 5
số mũ nhỏ nhất của 2 là 4 .số mũ nhỏ nhất của 3 là 1
ƯCLN(480;720)=2^4 . 3 .5=240
Vậy số tự nhiên a lớn nhất là 240