Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Có 6 số tự nhieenlaf bội của 25 đồng thời là ước của 300
1.Có 6 STN là bội của 25 đồng thời là ước của 300. 2.Số nguyên tố lớn nhất có dạng *31 là 631 3.33 4.2215 nha (ai thấy đúng thì tích cho mik nha)
gọi 3 số phải tìm là a, b, c giả sử a > b > c ﴾a, b, c khác 0﴿
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 ﴾b + c﴿= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có 7 x 200 + 11 ﴾b + c﴿ = 1444
11 ﴾b +c ﴿= 44 b + c = 4 vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 ‐ a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
Ko có số nào thỏa mãn đề bài vì hai số cộng lại là hai số có 3 chữ số mà tổng là số có 2 chữ số
số tự nhiên chia 5 dư 3 có tận cùn là 3 hoặc 8 mà số đó chia hết cho 2 nên số đó là 88
Gọi số cần tìm là abc. Ta có abc+1 chia hết cho 2,3,4,5,6.
2=2
3=3
4=2^2
5=5
6=2.3. BCNN(2,3,4,5,6)=2^2.3.5=60. =>abcEB(60)=0,60,...
Vì abc+1 lớn nhất nên abc+1=960 =>abc=959.
Lời giải:
Gọi số cần tìm là $a$. Theo đề thì:
$a-3\vdots 70,210,350$
$\Rightarrow a-3\vdots BCNN(70,210,350)$
$\Rightarrow a-3\vdots 1050$
$\Rightarrow a=1050k+3$ với $k$ là số tự nhiên
Vì $a$ có 4 chữ số nên $1050k+3>999$
$\Rightarrow k>0$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. $\Rightarrow k=1$
Khi đó: $a=1050.1+3=1053$
Gọi số tự nhiên cần tìm có dạng abcd ( \(0< a\le9\) , \(0\le b,c,d\le9\) )
Do số cần tìm khi chia cho 70 , 210 , 350 có cùng số dư là 3 nên
=> ( abcd - 3 ) \(⋮\) 70 , 210 , 350
=> ( abcd -3 ) \(⋮\) ƯCLN( 70 ; 210 ; 350)
70 = 2 . 5 . 7
210 = 2 . 3 . 5 . 7
350 = 2 . \(5^2\) . 7
=> ƯCLN ( 70;210;350) = 2 . 3 . \(5^2\) . 7 = 1050
=> abcd -3 chia hết 1050
mà abcd là số nhỏ nhất có 4 chữ số
=> abcd -3 = 1050
=> abcd = 1053
vậy số cần tìm là 1053
Giải:
Gọi tổng phải tìm là S, tổng các số có 2 chữ số là \(S_1\), tổng các chữ số chia hết cho 3 là \(S_2\), tổng các số có 2 chữ số chia hết cho 5 là \(S_3\), tổng các số có 2 chữ số chia hết cho 15 là \(S_4\). Ta lần lượt có:
\(S_1=\frac{10+99}{2}\times90=4905\) ; \(S_2=\frac{12+99}{2}\times30=1665.\)
\(S_3=\frac{10+95}{2}\times18=945\) ; \(S_4=\frac{15+90}{2}\times6=315.\)
\(S=S_1-S_2-S_3+S_4=4905-1665-945+315=2610\)
( Phải cộng thêm \(S_4\) vì trong \(S_2\) và \(S_3\) có những số vừa chia hết cho 3 vừa chia hết cho 5(tức là chia hết cho 15) nên những số đó đã được trừ đi 2 lần)
gọi A là tổng các số 2 chữ số là:
A= 10+11+12+13+...+99
=10+99x90:2=4905
gọi B là tổng các chữ số chia hết cho 3:
B=12+15+18+...+99
=12+99x30:2=1665
gọi C là tổng các chữ số chia hết cho 5:
C=10+15+20+..+99
= 10+95x18:2=945
gọi D là tổng hai số chia hết cho cả 3 và 5:
D=15+30+...+90
=15+90x6:2=315.
Tổng tất cả hai số tự nhiên không chia hết cho cả 3 và 5 là:
4905-1665-945+315=2610.
Đ/s:...
Ta có: 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN (3, 4, 5, 6) = 22.3.5 = 60.
Do đó, BC(3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; 360; 420; 480; 540; 600; 660; 720; 780; 840; 900; 960; 1020; ...}
Số lớn nhất có ba chữ số chia hết cho 3, 4, 5, 6 là 960.