K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Đáp án A

Kẻ B H ⊥ S C ⇒ d B ; S C = B H .

 Ta có: B C ⊥ S A B C ⊥ A B ⇒ B C ⊥ S A B ⇒ B C ⊥ S B

Do đó: 1 B H 2 = 1 B C 2 + 1 B S 2 = 1 B C 2 + 1 B A 2 + S A 2 = 1 6 a 2 + 1 9 a 2 + 3 a 2 = 1 4 a 2

⇒ B H = 2 a ⇒ d B ; S C = 2 a .

20 tháng 6 2019

14 tháng 10 2019

30 tháng 7 2019

5 tháng 4 2017

5 tháng 4 2017

☺☻♥♦♣♠•◘○◙♂♀♪♫☼►◄↕‼¶§▬↨↑↓→←2◘↔▲▼ !"#◘%&'Ü)*+,-./0123;

21 tháng 11 2019

Chọn C

Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.

Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.

Trong tam giác vuông SAB' ta có:

24 tháng 12 2023

1

24 tháng 12 2023

1

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

25 tháng 2 2018

Chọn D.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Kẻ AH ⊥ SB.

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Trong tam giác vuông SAB ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)