Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Mặt cầu (S) có tâm I(-1;2;-3), R = 5. Nhận thấy A 2 ; 2 ; 1 ∈ S . Do đó (S) là mặt cầu ngoại tiếp tứ diện vuông ABCD. Gọi G là trọng tâm tam giác BCD ta có
Vì vậy
Chọn đáp án D.
Dấu bằng xảy ra khi và chỉ khi I G ⊥ B C D ⇔ B C D : 3 x + 4 z + 20 = 0 .
Chọn đáp án D.
Đáp án D
Phương pháp:
- Gọi H là trực tâm tam giác, chứng minh S H ⊥ A B C bằng cách sử dụng định lý: “Đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó”.
- Tính độ dài SH bằng cách sử dụng hệ thức lượng giữa cạnh và đường cao trong tam giác vuông.
Cách giải: Gọi H là trực tâm của tam giác ABC.
Ta sẽ chứng minh SH là đường cao của hình chóp.
Gọi E, D lần lượt là hình chiếu của B,A lên AC,BC.
Chú ý khi giải: Từ nay về sau, các em có thể ghi nhớ hệ thức liên hệ giữa đường cao và cạnh trong hình chóp S.ABC mà có SA, SB, SC đôi một vuông góc, đó là 1 S H 2 = 1 S A 2 1 S B 2 + 1 S C 2
Đáp án D
Gọi I là tâm mặt cầu ngoại tiếp hình chóp tam giác S.ABC. Hạ IJ vuông góc với (SAB) . Vì J các đều 3 điểm S; A; B nên J cũng cách đều ba điểm S; A; B
Vì tam giác SAB vuông tại đỉnh S nên J là trung điểm của AB.
Ta có S J = 1 2 A B = 1 2 a 2 + b 2
Do SC vuông góc với (SAB) nên IJ//SC.
Gọi H là trung điểm của SC, ta có S H = I J = c 2
Do vậy I S 2 = I J 2 + S J 2 = a 2 + b 2 + c 2 4 và bán kính hình cầu ngoại tiếp S.ABC là R = I S = 1 2 a 2 + b 2 + c 2
Đáp án A
Dễ dàng suy ra:
A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c , a , b , c > 0
vì d M ; O B C = d M ; O y z = x M = 1 , tương tự ta có được M 1 ; 2 ; 3
M ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 1.2.3 a . b . c 3 ⇔ a b c 6 = V O . A B C ≥ 27
Dấu bằng xảy ra khi:
1 a = 2 b = 3 c = 1 3 ⇒ a = 3 ; b = 6 ; c = 9 ⇒ a + b + c = 18
Đáp án là A
Kẻ B H ⊥ S C ⇒ d B ; S C = B H .
Ta có: B C ⊥ S A B C ⊥ A B ⇒ B C ⊥ S A B ⇒ B C ⊥ S B
Do đó: 1 B H 2 = 1 B C 2 + 1 B S 2 = 1 B C 2 + 1 B A 2 + S A 2 = 1 6 a 2 + 1 9 a 2 + 3 a 2 = 1 4 a 2
⇒ B H = 2 a ⇒ d B ; S C = 2 a .