Cho S = 1 - 2 + 22 + 23 + ... + 22014
a) Tính S
b) Tìm x biết 3S = 128x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)
=> 2S + S = -22015 + 1
=> 3S = -22015 + 1
=> 3S - 1 = -22015
=> 1 - 3S = 22015
( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)
a) Ta có A = 21 + 22 + 23 + ... + 22022
2A = 22 + 23 + 24 + ... + 22023
2A - A = ( 22 + 23 + 24 + ... + 22023 ) - ( 21 + 22 + 23 + ... + 22022 )
A = 22023 - 2
Lại có B = 5 + 52 + 53 + ... + 52022
5B = 52 + 53 + 54 + ... + 52023
5B - B = ( 52 + 53 + 54 + ... + 52023 ) - ( 5 + 52 + 53 + ... + 52022 )
4B = 52023 - 5
B = \(\dfrac{5^{2023}-5}{4}\)
b) Ta có : A + 2 = 2x
⇒ 22023 - 2 + 2 = 2x
⇒ 22023 = 2x
Vậy x = 2023
Lại có : 4B + 5 = 5x
⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x
⇒ 52023 - 5 + 5 = 5x
⇒ 52023 = 5x
Vậy x = 2023
a \(4S=4+4^2+4^3+...+4^{24}\)
\(S=\frac{4S-S}{3}=\frac{4^{24}-1}{3}\)
b/ Xem lại đề bài\(3S=4^{6x}-1=4^{24}-1\Rightarrow6x=24\Rightarrow x=4\)
a)-22<x<23
=>xE{-21;-20;...;21;22}
Tổng các số nguyên x là :-21+(-20)+...+21+22=(-21+21)+(-20+20)+...+(-1+1)+0+22=0+0+...+0+22=22
b)Nếu a dương thì S=a+|a|+...+|a|=a+a+...+a=2014a
Nếu a âm thì S=(-a)+|a|+....+(-a)+|a|=(-a-a-...-a)+(a+a+....+a)=1002(-a)+1002a=1002(a-a)=1002*0=0
a: Tổng các số hạng là:
\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)
Ta có: A+1=2x
\(\Leftrightarrow2x=24311\)
hay \(x=\dfrac{24311}{2}\)
a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)
Vậy: \(1+2^2+2^3+...+2^{10}=2045\)
b)
a] \(60-3\left(x-1\right)=2^3\cdot3\)
\(\Rightarrow60-3\left(x-1\right)=24\)
\(\Rightarrow3\left(x-1\right)=36\)
\(\Rightarrow x-1=12\)
\(\Rightarrow x=13\)
b] \(\left(3x-2\right)^3=2\cdot2^5\)
\(\Rightarrow\left(3x-2\right)^3=2^6\)
\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)
\(\Rightarrow3x-2=2^2\)
\(\Rightarrow3x=6\)
\(x=2\)
c] \(5^{x+1}-5^x=500\)
\(\Rightarrow5^x\left(5-1\right)=500\)
\(\Rightarrow5^x\cdot4=500\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
d] \(x^2=x^4\)
\(\Rightarrow x=x^2\)
\(\Rightarrow x-x^2=0\)
\(\Rightarrow x\left(1-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
S=22016 -1