K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

2 tháng 9 2019

Tham khảo hình vẽ bên.

Gọi P, Q lần lượt là trung điểm của CD, SD. Khi đó thiết diện tạo bởi mặt phẳng (OMN) với hình chóp là hình thang MNPQ. Thật vậy:

Chọn B.

22 tháng 10 2023

Để chứng minh a. ON//(SAB) và b. (OMN)//(SCD), chúng ta có thể sử dụng các định lý và quy tắc trong hình học không gian.

a. Để chứng minh ON//(SAB), ta có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Theo định lý này, nếu có hai đường thẳng cắt một mặt phẳng và các đường thẳng này đều song song với một đường thẳng thứ ba trong mặt phẳng đó, thì hai đường thẳng đó cũng song song với nhau. Áp dụng định lý này, ta có thể chứng minh ON//(SAB) bằng cách chứng minh rằng ON và AB đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.

b. Để chứng minh (OMN)//(SCD), ta cũng có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Tương tự như trường hợp trước, ta cần chứng minh rằng OM và CD đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.

Tuy nhiên, để chứng minh chính xác các phần a và b, cần có thêm thông tin về các góc và độ dài trong hình chóp S.ABCD.

22 tháng 9 2017

26 tháng 2 2017

Đáp án B

Dễ thấy M N | | A B nên mặt phẳng (CMN) cắt mặt phẳng (ABCD) theo giao tuyến là đường thẳng qua C và song song với AB.

Vậy giao tuyến của (MNC) và (ABD) là đường thẳng CD.

5 tháng 3 2018

24 tháng 9 2017

 

Đáp án C.

 

Trong (ABCD) gọi 

Trong (SBC) gọi: 

Trong (SBD) gọi: Q = IJ SB

Trong (SBC) gọi: R = KQ  ∩ SA

Suy ra, thiết diện là ngũ giác MNPQR.

27 tháng 8 2019

Đáp án D

Qua O dựng đường thẳng P Q ∥ A B . Vậy P, Q lần lượt là trung điểm của AD và BC.

Qua P dựng đường thẳng P N ∥ S A . Vậy N là trung điểm của SD

Qua Q dựng đường thẳng Q M ∥ S B . Vậy M là trung điểm của SC.

Nối M và N thiết diện của (P) và hình chóp S.ABCD là tứ giác MNPQ.

Vì P Q ∥ C D , M N ∥ C D ⇒ P Q ∥ M N . Vậy tứ giác MNPQ là hình thang.

Ta có P Q = A B = 8 $ , M N = 1 2 A B = 4, M Q = N P = 1 2 S A = 3 . Vậy MNPQ là hình thang cân.

Gọi H là chân đường cao hạ từ đỉnh M của hình thang MNPQ. Khi đó ta có 

H Q = 1 4 P Q = 2 ⇒ M H = M Q 2 − H Q 2 = 5

Vậy diện tích của thiết diện cần tìm là  S = ( M N + P Q ) M H 2 = 6 5 .

9 tháng 6 2017