K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

c) x2 + y2 + xz + yz + 2xy

= (x2 + 2xy + y2) + (xz + yz)

= (x + y)2 + z(x + y)

= (x + y)(x + y + z)

25 tháng 12

x2(y - z) + y2(z - x) + z2(x - y)

 

= z2(x - y) + x2 y - x2 z + y2 z - y2 x

 

= z2(x - y) + (x2 y - y2 x) + (- x2 z + y2 z)

 

= (x - y)(z2 + xy - zx - zy)

 

= (x - y)[(z2 - zx) + (xy - zy)]

 

= (x - y)(z - x)(z -y)

27 tháng 7 2018

\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left[\left(z-y\right)+\left(y-x\right)\right]\)

\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-y\right)-x^2z^2\left(y-x\right)\)

\(=\left(y-x\right)\left(x^2y^2-x^2z^2\right)+\left(z-y\right)\left(y^2z^2-x^2z^2\right)\)

\(=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)+z^2\left(z-y\right)\left(y-x\right)\left(y+x\right)\)

\(=\left(y-x\right)\left(z-y\right)\left(-x^2y-x^2z+z^2y+z^2x\right)\)

\(=\left(y-x\right)\left(z-y\right)\left[xz\left(z-x\right)+y\left(z-x\right)\left(z+x\right)\right]\)

\(=\left(y-x\right)\left(z-y\right)\left(z-x\right)\left(xy+yz+xz\right)\)

17 tháng 11 2019

a) (x - 1)(x + l)(x - 2)(x - 4).      b) (x - 2)( x 2  + 4).

c) 2y(3 x 2   +   y 2 ).                          d) 2(x + y + z) ( a   -   b ) 2 .

24 tháng 8 2021

a. \(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)

\(=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left[\left(x-3\right)^2-1\right]\left(x^2-1\right)\)

\(=\left(x-3+1\right)\left(x-3-1\right)\left(x+1\right)\left(x-1\right)\)

\(=\left(x-2\right)\left(x-4\right)\left(x+1\right)\left(x-1\right)\)

b. \(x^3-2x^2+4x-8\)

\(=\left(x^3+4x\right)-\left(2x^2+8\right)\)

\(=x\left(x^2+4\right)-2\left(x^2+4\right)\)

\(=\left(x-2\right)\left(x^2+4\right)\)

c. \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3\)

\(=2y\left(3x^2+y^2\right)\)

d. \(2a^2\left(x+y+z\right)-4ab\left(x+y+z\right)+2b^2\left(x+y+z\right)\)

\(=\left(2a^2-4ab+2b^2\right)\left(x+y+z\right)\)

\(=2\left(a^2-2ab+b^2\right)\left(x+y+z\right)\)

\(=2\left(a-b\right)^2\left(x+y+z\right)\)

26 tháng 7 2017

\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)

\(=x\left(y^2-z^2\right)-y\left(y^2-z^2+x^2-y^2\right)+z\left(x^2-y^2\right)\)

\(=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

chúc bn hc tốt ^^ 

27 tháng 10 2019

Câu hỏi của nguyễn khánh linh - Toán lớp 8 - Học toán với OnlineMath

6 tháng 8 2017

a,Từ giả thiết ta có

(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2

=(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

Đặt x2+y2+z2=a

xy+yz+zx=b

=>(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

=a(a+2b)+b2

=a2+2ab+b2

=(a+b)2

=(x2+y2+z2+xy+yz+zx)2

câu b hơi dài mình gửi sau nhé

6 tháng 8 2017

Ta có: 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4

Gọi x^4+y^4+z^4=a

x^2+y^2+z^2=b

x+y+z=c

=>2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4=2a-b^2-2bc^2+c^4

=2a-2b^2+b^2-2bc^2+c^4

=2(a-b^2)+(b+c^2)^2

Ta có

2(a-b2)=2[x^4+y^4+z^4-(x^2+y^2+z^2)2]

=2[x^4+y^4+z^4-x^4-y^4-z^4-2x2y2-2y2z2-2z2x2]

=2.(-2)(x2y2+y2z2+z2x2)

=-4(x2y2+y2z2+z2x2)

Lại có

(b+c^2)^2

=[(x^2+y^2+z^2)+(x+y+z)2]2

=[(x^2+y^2+z^2)-(x^2+y^2+z^2)-2(xy+yz+zx)]2

=4(xy+yz+zx)2

=>2(a-b^2)+(b+c^2)^2

=-4(x2y2+y2z2+z2x2)+4(xy+yz+zx)2

=8xyz(x+y+z)

11 tháng 10 2020

Ta có: \(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)

\(=x\left(y-z\right)\left(y+z\right)+yz^2-x^2y+zx^2-y^2z\)

\(=x\left(y-z\right)\left(y+z\right)-\left(y^2z-yz^2\right)-\left(x^2y-zx^2\right)\)

\(=x\left(y-z\right)\left(y+z\right)-yz\left(y-z\right)-x^2\left(y-z\right)\)

\(=\left(y-z\right)\left(xy+zx-yz-x^2\right)\)

\(=\left(y-z\right)\left[\left(zx-yz\right)-\left(x^2-xy\right)\right]\)

\(=\left(y-z\right)\left[z\left(x-y\right)-x\left(x-y\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

nhờ giải giupws em với a 1. Phân tích các đa thức sau thành nhân tử: a)     5x2 – 10xy b)    3x(x – y)  –  6(x – y) c)     2x(x – y) – 4y(y – x) d)    9x2 – 9y2 e)     x2 – xy – x + y f)      xy – xz – y + z 2. Phân tích các đa thức sau thành nhân tử:  a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                          c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2 e)x2 + 10x + 25                f) 25x2 –...
Đọc tiếp

nhờ giải giupws em với a

1. Phân tích các đa thức sau thành nhân tử:

a)     5x2 – 10xy

b)    3x(x – y)    6(x – y)

c)     2x(x – y) – 4y(y – x)

d)    9x2 – 9y2

e)     x2 – xy – x + y

f)      xy – xz – y + z

2. Phân tích các đa thức sau thành nhân tử:

 a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                         

c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2

e)x2 + 10x + 25                f) 25x2 – 20xy + 4y2

      g)9x4 + 24x2 + 16             h) x3 – 125

      i)x6 – 1                            k) x3 + 15x2 + 75x + 125

3. Tìm x biết :

a) 3x2 + 8x = 0              b) 9x2 – 25 = 0          c) x3 – 16x = 0     d) x3 + x = 0.

4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6

 

1
19 tháng 12 2023

Bài `1`

\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)

Bài `3`

\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)

\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)