Tìm n thuộc N sao cho 1!+2!+3!+4!+ ...........+n! là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1
Đặt A=n^4+n^3+1
với n=1=>A=3=>loại
với n\(\ge\)2 ta có: (2n2+n−1)2< 4A ≤(2n2+n) => 4A = ( 2n2+ n )2 => n = 2 ( thỏa mãn )
Để S là số chính phưong => 1! + 2! + 3! + ... + n! = m^2
Với n = 1 thì S = 1! = 1 là số chính phưong
Với n = 2 thì S = 1! + 2! = 3 không là số chính phưong
Với n = 3 thì S = 1! + 2! + 3! = 9 là số chính phưong
Với n = 4 thì S = 1! + 2! + 3! + 4! = 33 không là số chính phưong
Với n > 5 thì S có tạn cùng là 3 ( Vì 5! tạn cùng là 0, 6!, 7!, 8!, ... cũng tận cùng là 0 cộng với 33 là tổng các giai thùă của bốn số đầu khác 0)
Vậy n = 1; n = 3
Để S là số chính phưong => 1! + 2! + 3! + ... + n! = m^2
Với n = 1 thì S = 1! = 1 là số chính phưong
Với n = 2 thì S = 1! + 2! = 3 không là số chính phưong
Với n = 3 thì S = 1! + 2! + 3! = 9 là số chính phưong
Với n = 4 thì S = 1! + 2! + 3! + 4! = 33 không là số chính phưong
Với n > 5 thì S có tạn cùng là 3 ( Vì 5! tạn cùng là 0, 6!, 7!, 8!, ... cũng tận cùng là 0 cộng với 33 là tổng các giai thùă của bốn số đầu khác 0)
Vậy n = 1; n = 3
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Để \(n^2+n+1589\) là số chính phương thì \(n^2+n+1589=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2+4n+6356=4a^2\)
\(\Leftrightarrow\left(4n^2+4n+1\right)+5355=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2-\left(2a\right)^2=-5355\)
\(\)\(\Leftrightarrow\left(2n-2a+1\right)\left(2n+2a+1\right)=-5355\)
Từ đây xét 2n - 2a + 1 ; 2n + 2a + 1 là các ước của - 5355 là ra
\(n^2+n+1589\)
\(n^2+n+1589=m^2\)
\(\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)
\(2m+2n+1>2m-2n-1>0\)
Ta viết:\(\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\cdot1=1271\cdot5=205\cdot31=155\cdot414\)
\(\Rightarrow n=\text{ 1588,316,43,28}\)
Giả sử \(1!+2!+3!+4!+...+n!=x^2\left(x\in N\right)\)(*)
Xét \(n=1\)khi đó \(VT\)(*)=1 là số chính phương
Xét \(n=2\)khi đó \(VT\)(*)=5 không là số chính phương
Xét \(n=3\)khi đó \(VT\)(*)=9 là số chính phương
Xét \(n=4\) khi đó \(VT\)(*)=33 không là số chính phương
Xét \(n\ge5\)khi đó \(VT\)(*)=\(33+5!+6!+...+n!\), ta nhận thấy \(5!+6!+...+n!⋮5\)
\(\Rightarrow33+5!+6!+...+n!\)chia \(5\)dư \(3\)
Mà vế phâi (*) \(x^2\)là số chính phương nên chia cho 5 chỉ dư 0 hoặc 1 hoặc 4, không thể bằng vế trái.
Tổng hợp tất cả các trường hợp trên ta được \(n=1\)hoặc \(n=3\)