tìm GTLN,GTNN của hs
y=4cos2x-4cosx+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y=\frac{1}{2}sin2x-1\)
Do \(-1\le sin2x\le1\Rightarrow-\frac{3}{2}\le y\le-\frac{1}{2}\)
\(y_{min}=-\frac{3}{2}\) ; \(y_{max}=-\frac{1}{2}\)
2.
\(y=5+5\left(\frac{4}{5}cosx-\frac{3}{5}sinx\right)=5+5cos\left(x+a\right)\) với \(cosa=\frac{4}{5}\)
Do \(-1\le cos\left(x+a\right)\le1\Rightarrow0\le y\le10\)
\(y_{min}=0\) ; \(y_{max}=10\)
Sửa: \(y=3\sin x+4\cos x+2\)
Áp dụng BĐT Bunhiacopski được:
\(\left(3\sin x+4\cos x\right)^2\le\left(3^2+4^2\right)\left(\sin x^2+\cos x^2\right)=25\)
\(\Leftrightarrow-5\le3\sin x+4\cos x\le5\\ \Leftrightarrow-3\le3\sin x+4\cos x+2\le7\\ \Leftrightarrow y_{min}=-3\\ y_{max}=7\)
\(M^2=\left(3sinx+4cosx\right)^2\le\left(3^2+4^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le M\le5\)
\(\Rightarrow M_{max}=5\) ; \(M_{min}=-5\)
Xét phương trình: y=3sinx+4cosx+5
<=>3sinx+4cosx+5-y=0
Để phương trình có nghiệm:
=>32+42≥(5-y)2 (đẳng thức Bunhiacopxki)
<=>25≥25-10y+y2
<=>y2-10y≤0
<=>0≤y≤10
vậy miny=0; maxy=10
đợi ông lm thì t ra r
\(y=4cos^2x-4cosx+1+1=\left(2cosx-1\right)^2+1\ge1\)
\(y_{min}=1\) khi \(cosx=\frac{1}{2}\)
\(y=4cos^2x-4cosx-8+10=4\left(cosx+1\right)\left(cosx-2\right)+10\)
Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}cosx+1\ge0\\cosx-2< 0\end{matrix}\right.\)
\(\Rightarrow\left(cosx+1\right)\left(cosx-2\right)\le0\)
\(\Rightarrow y\le10\Rightarrow y_{max}=10\) khi \(cosx=-1\)