K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

đợi ông lm thì t ra r

NV
22 tháng 8 2020

\(y=4cos^2x-4cosx+1+1=\left(2cosx-1\right)^2+1\ge1\)

\(y_{min}=1\) khi \(cosx=\frac{1}{2}\)

\(y=4cos^2x-4cosx-8+10=4\left(cosx+1\right)\left(cosx-2\right)+10\)

Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}cosx+1\ge0\\cosx-2< 0\end{matrix}\right.\)

\(\Rightarrow\left(cosx+1\right)\left(cosx-2\right)\le0\)

\(\Rightarrow y\le10\Rightarrow y_{max}=10\) khi \(cosx=-1\)

NV
1 tháng 10 2020

1.

\(y=\frac{1}{2}sin2x-1\)

Do \(-1\le sin2x\le1\Rightarrow-\frac{3}{2}\le y\le-\frac{1}{2}\)

\(y_{min}=-\frac{3}{2}\) ; \(y_{max}=-\frac{1}{2}\)

2.

\(y=5+5\left(\frac{4}{5}cosx-\frac{3}{5}sinx\right)=5+5cos\left(x+a\right)\) với \(cosa=\frac{4}{5}\)

Do \(-1\le cos\left(x+a\right)\le1\Rightarrow0\le y\le10\)

\(y_{min}=0\) ; \(y_{max}=10\)

7 tháng 3 2017

6 tháng 9 2021

Sửa: \(y=3\sin x+4\cos x+2\)

Áp dụng BĐT Bunhiacopski được:

\(\left(3\sin x+4\cos x\right)^2\le\left(3^2+4^2\right)\left(\sin x^2+\cos x^2\right)=25\)

\(\Leftrightarrow-5\le3\sin x+4\cos x\le5\\ \Leftrightarrow-3\le3\sin x+4\cos x+2\le7\\ \Leftrightarrow y_{min}=-3\\ y_{max}=7\)

2 tháng 11 2020

Xét phương trình: y=3sinx+4cosx+5

<=>3sinx+4cosx+5-y=0

Để phương trình có nghiệm:

=>32+42≥(5-y)2 (đẳng thức Bunhiacopxki)

<=>25≥25-10y+y2

<=>y2-10y≤0

<=>0≤y≤10

vậy miny=0; maxy=10

NV
15 tháng 9 2020

8.

\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)

Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)

\(y_{min}=-2;y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\)

\(y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)

NV
26 tháng 9 2020

\(y=sin^2x-6sinx+10\)

\(y=sin^2x-6sinx-7+17=\left(sinx+1\right)\left(sinx-7\right)+17\le17\)

\(y_{max}=17\) khi \(sinx=-1\)

\(y=sin^2x-6sinx+5+5=\left(1-sinx\right)\left(5-sinx\right)+5\ge5\)

\(y_{min}=5\) khi \(sinx=1\)

27 tháng 7 2023

cái chỗ tìm ymax,min. X thuộc R x mình phải ngồi bấm từ giá trị để coi x nào là R hả, em thấy làm vậy hơi mất tg ko biết có tip nào nhanh hơn ko ạ

 

NV
14 tháng 9 2020

8.

\(y=\left(cosx+1\right)^2-1\ge-1\Rightarrow y_{min}=-1\)

\(y=\left(cosx-1\right)\left(cosx+3\right)+3\le3\Rightarrow y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\Rightarrow y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)

15.

Đáp án A đúng

20.

\(-1\le sin\left(\frac{x}{2}+\frac{\pi}{7}\right)\le1\Rightarrow-5\le y\le-1\)

\(y_{max}=-1\) ; \(y_{min}=-5\)