Cho đa thức f(x) = ax^2+bx+c. Chứng minh rằng 1 là nghiệm của đa thức nếu a+b+c=0? Để cho đa thức nhận -1 là nghiệm thì điều kiện của a,b,c như thế nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=1\) và đa thức \(f\left(x\right)=ax^2+bx+c\) ta được :
\(f\left(x\right)=a.1^2+b.1+c\)
\(f\left(x\right)=a+b+c\)
Mà giả thuyết cho \(a+b+c=0\) nên \(f\left(x\right)=a+b+c=0\)
Vậy \(x=1\) là một nghiệm của đa thức \(f\left(x\right)=ax^2+bx+c\)
Chúc bạn học tốt ~
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
Để x=1 là một nghiệm của f(x)
thì f(1)=a.12+b.1+c=0
=>a+b+c=0
Vậy .........
Vì x=1, x=-1 là ngiệm của đa thức f(x) nên
a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0
=>a+b+c=a-b+c=0 (1)
=>b=-b
=>b=0
thay b=0 vào (1) ta có a+c=0
=>a và c là 2 số đối nhau