K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2022

\(\Delta'=\left(m+1\right)^2-2m-10=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

a.

\(P=x_1^2+x_2^2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2\)

\(P=4\left(m+1\right)^2+4\left(2m+10\right)\)

\(P=4m^2+16m+44=\left(4m^2+16m+12\right)+32\)

\(P=4\left(m+1\right)\left(m+3\right)+32\ge32\)

\(P_{min}=32\) khi \(m=-3\)

b.

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m+10\end{matrix}\right.\)

Trừ vế cho vế:

\(x_1+x_2-x_1x_2=-8\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

5 tháng 7 2023

\(\Delta=\left(m+1\right)^2-4.1.2=\left(m+1\right)^2-8\)

Để PT có 2 nghiệm thì:

\(\Delta\ge0\Leftrightarrow\left(m+1\right)^2-8\ge0\\ \Leftrightarrow\left(m+1\right)^2\ge8\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=-\left(m+1\right)\\x_1x_2=2\end{matrix}\right.\)

\(x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2.2=\left(m+1\right)^2-4\)

Mà \(\left(m+1\right)^2\ge8\) nên \(\left(m+1\right)^2-4\ge4\)

\(\Rightarrow min_{x_1^2+x_2^2}=4\) (dấu bằng xảy ra)

\(\Leftrightarrow\left(m+1\right)^2=8\)

\(\Leftrightarrow m^2+2m+1=8\\\Leftrightarrow m^2+2m-7=0 \)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

22 tháng 7 2017

Phương trình có hai nghiệm

B = 2 ( x 1 2 + x 2 2 ) + 16 − 3 x 1 x 2

= 2 ( x 1 + x 2 ) 2 − 4 x 1 x 2 + 16 − 3 x 1 x 2 = 2 ( 2 m + 2 ) 2 − 4 ( m 2 + 2 ) + 16 − 3 ( m 2 + 2 ) = 4 m 2 + 16 m + 16 − 3 ( m 2 + 2 ) = 2 m + 4 − 3 ( m 2 + 2 ) = − 3 m 2 + 2 m − 2

Xét hàm số y = − 3 m 2 + 2 m − 2 với  m ≥ 1 2

Bảng biến thiên

 

Suy ra giá trị m a x m ≥ 1 2 y = − 7 4  khi  m = 1 2

Vậy giá trị lớn nhất của biểu thức B là - 7 4 khi  m = 1 2

Đáp án cần chọn là: B

a: Δ=(2m-1)^2-4*(-m)

=4m^2-4m+1+4m=4m^2+1>0

=>Phương trình luôn có nghiệm

b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)

\(=\left(2m-1\right)^2-3\left(-m\right)\)

=4m^2-4m+1+3m

=4m^2-m+1

=4(m^2-1/4m+1/4)

=4(m^2-2*m*1/8+1/64+15/64)

=4(m-1/8)^2+15/16>=15/16

Dấu = xảy ra khi m=1/8

NV
16 tháng 1 2021

\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)

\(\Rightarrow1\le m\le\dfrac{7}{3}\)

\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)

\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)

\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)

1 tháng 3 2022

-mình sửa đề luôn nhé

\(\Delta=9m^2-4\left(3m-2\right)=9m^2-12m+8=\left(3m-2\right)^2+4>0\)

Vậy pt luôn có 2 nghiệm pb 

Vì x1 là nghiệm pt trên nên 

\(A=3mx_1-3m+2+3mx_2-m+1=3m.3m-4m+3\)

\(=9m^2-4m+3=9m^2-\dfrac{2.3m.4}{6}+\dfrac{16}{36}-\dfrac{16}{36}+3\)

\(=\left(3m-\dfrac{4}{6}\right)^2+\dfrac{23}{9}\ge\dfrac{23}{9}\)Dấu ''='' xảy ra khi m = 2/9 

21 tháng 12 2019

Đáp án: B

5 tháng 7 2023

Bổ sung thêm điều kiện đề với \(m\ne1\) nữa nhé: )

Nhẩm nghiệm: \(a-b+c=0\) \(\left(m-1-m-1+2=0\right)\)

\(\Rightarrow\) PT có 2 nghiệm \(x_1=-1;x_2=\dfrac{2}{m-1}\)

Nếu \(x_1^2-x_2^2=3\):

\(\left(-1\right)^2-\left(\dfrac{2}{m-1}\right)^2=3\)

=> Không có giá trị m thỏa mãn.

Nếu \(x_1^2-x_2^2=-3\):

\(\left(-1\right)^2-\left(\dfrac{2}{m-1}\right)^2=-3\\ \Rightarrow m=2\left(TM\right)\)