K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1 2021

\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)

\(\Rightarrow1\le m\le\dfrac{7}{3}\)

\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)

\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)

\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)

22 tháng 7 2017

Phương trình có hai nghiệm

B = 2 ( x 1 2 + x 2 2 ) + 16 − 3 x 1 x 2

= 2 ( x 1 + x 2 ) 2 − 4 x 1 x 2 + 16 − 3 x 1 x 2 = 2 ( 2 m + 2 ) 2 − 4 ( m 2 + 2 ) + 16 − 3 ( m 2 + 2 ) = 4 m 2 + 16 m + 16 − 3 ( m 2 + 2 ) = 2 m + 4 − 3 ( m 2 + 2 ) = − 3 m 2 + 2 m − 2

Xét hàm số y = − 3 m 2 + 2 m − 2 với  m ≥ 1 2

Bảng biến thiên

 

Suy ra giá trị m a x m ≥ 1 2 y = − 7 4  khi  m = 1 2

Vậy giá trị lớn nhất của biểu thức B là - 7 4 khi  m = 1 2

Đáp án cần chọn là: B

8 tháng 5 2019

 

PT x 2 − 2 m + 1 x + m 2 − 1 = 0     ( 1 ) có 2 nghiệm phân biệt x 1 , x 2

 

Theo Vi-et ta có:  x 1 + x 2 = 2 m + 1 x 1 x 2 = m 2 − 1

Ta có:  x 1 2 + x 2 2 + 8 x 1 x 2 = x 1 + x 2 2 + 6 x 1 x 2 = 2 m + 1 2 + 6 m 2 − 1

= 10 m 2 + 2 5 m + 1 25 − 27 5 = 10 m + 1 5 2 − 27 5

⇒ x 1 2 + x 2 2 + 8 x 1 x 2 ≥ − 27 5

Dấu ‘=’ xảy ra khi m = − 1 5 (thỏa mãn (*))

Vậy x 1 2 + x 2 2 + 8 x 1 x 2 đạt giá trị nhỏ nhất khi  m = − 1 5

Đáp án cần chọn là: C

 

21 tháng 12 2019

Đáp án: B

5 tháng 3 2017

Đáp án: C

13 tháng 5 2019

Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6

= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8

⇒ A = m - 2 2 - 12 ≥ 12

Suy ra  m i n   A = - 12 ⇔ m = 2

m = 2 thỏa mãn (*)

Vậy với  m = 2  thì biểu thức A đạt giá trị nhỏ nhất.

Đáp án cần chọn là: A

16 tháng 1 2021

Hình như đề thiếu, pt: \(x^2-\left(m+1\right)x+m-2=0\)

Phương trình đã cho có nghiệm khi \(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2-2m+9>0\)

\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị m

Định lí Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m-2\end{matrix}\right.\)

a, Theo giả thiết ta có: \(x_1^2+x_2^2=100\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=100\)

\(\Leftrightarrow\left(m+1\right)^2-2\left(m-2\right)=100\)

\(\Leftrightarrow m^2+2m+1-2m+4=100\)

\(\Leftrightarrow m^2=95\)

\(\Leftrightarrow m=\sqrt{95}\)

b, \(P=\left|x_1-x_2\right|\)

\(P^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(m+1\right)^2-4\left(m-2\right)\)

\(=m^2-2m+9=\left(m-1\right)^2+8\ge8\)

\(\Rightarrow P=\left|x_1-x_2\right|\ge2\sqrt{2}\)

\(minP=2\sqrt{2}\Leftrightarrow m=1\)

1 tháng 12 2021

Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0

suy ra denta= (2m+1)^2-4.(m^2+1)>0

suy ra : m>3/4

Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)

 Ta có: P∈Z

⇒4P∈Z

⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z

⇒2m+1=Ư(5)={−5;−1;1;5}

⇒m={−3;−1;0;2} 

Kết hợp đk m>3/4 ta được m=2

 

 

18 tháng 11 2019

Bảng biến thiên

Vậy m= -2 là giá trị cần tìm

Chọn B.