Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
a: a=1; b=2m; c=-1
Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt
b: \(x_1^2+x_2^2-x_1x_2=7\)
=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)
=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)
=>4m^2=7-3=4
=>m^2=1
=>m=1 hoặc m=-1
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
a: Δ=(2m-1)^2-4*(-m)
=4m^2-4m+1+4m=4m^2+1>0
=>Phương trình luôn có nghiệm
b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(2m-1\right)^2-3\left(-m\right)\)
=4m^2-4m+1+3m
=4m^2-m+1
=4(m^2-1/4m+1/4)
=4(m^2-2*m*1/8+1/64+15/64)
=4(m-1/8)^2+15/16>=15/16
Dấu = xảy ra khi m=1/8
`a)Delta`
`=m^2-4(m-1)`
`=m^2-4m+4`
`=(m-2)^2>=0`
`=>` pt luôn có nghiệm với mọi m
b)Áp dụng vi-ét:
`x_1+x_2=m,x_1.x_2=m-1`
`=>x_1^2+x_2^2`
`=(x_1+x_2)^2-2x_1.x_2`
`=m^2-2(m-1)`
`=m^2-2m+1`
Với `m=3`
`=>x_1^2+x_2^2=9-6+1=4`
\(ac=-2< 0\Rightarrow\) phương trình đã cho luôn có 2 nghiệm (trái dấu)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2\end{matrix}\right.\)
\(x_1^2+x_2^2=12\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)
\(\Leftrightarrow4m^2+4=12\)
\(\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)
a*c<0
=>Phương trình luôn có hai nghiệm
x1^2+x2^2=12
=>(x1+x2)^2-2x1x2=12
=>(2m)^2-2*(-2)=12
=>4m^2+4=12
=>m^2+1=3
=>m^2=2
=>\(m=\pm\sqrt{2}\)