K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2020

giả sử x,y là nghiệm nguyên dương của phương trình \(xy-4x=35-5y\)

Ta có pt\(xy-4x=35-5y\)

\(\Leftrightarrow x\left(y-4\right)+5y=35\)

\(\Leftrightarrow x\left(y-4\right)+5y-20=15\)

\(\Leftrightarrow x\left(y-4\right)+5\left(y-4\right)=15\)

\(\Leftrightarrow\left(y-4\right)\left(x+5\right)=15\)

Vì \(x\in N\Rightarrow x+5\in N\)và \(x+4>0\)

\(\Rightarrow y-4>0\)và \(y-4\in N\)

Đó lập bảng làm nốt nhé chị 

17 tháng 1 2020

Dòng thứ 3 từ dưới lên em ghi nhầm phải  là \(x+5>0\)nhé

24 tháng 12 2018

\(xy-4x=25-5y\Leftrightarrow xy-4x+5y-25=0\)

\(\Leftrightarrow x\left(y-4\right)+5\left(y-4\right)-5=0\)

\(\Leftrightarrow\left(x+5\right)\left(y-4\right)=5\)

Từ đó có ước và tìm nghiệm tự nhiên.

5 tháng 11 2019

Ta có:

xy+4x=35+5y

\(\Leftrightarrow\)x(y+4)=20+15+5y

\(\Leftrightarrow\)x(y+4)=5(y+4)+15

\(\Leftrightarrow\)x(y+4)+5(y+4)=15

\(\Leftrightarrow\)(x+5)(y+4)=15

Ta có bảng:

x+5-15-5-3-113515
y+4-1-3-5-1515531
x-20-10-8-6-4-2010
y-5-7-9-19111-1-3

Vậy................

5 tháng 11 2019

<=>xy+4x-5y=35
<=>xy+4x-5y-20=15
<=> x(y+4) -5(y+4)=15=1.15=(-1)(-15)=3.5=.....
Ta có bảng.....
k nhé :3

16 tháng 12 2019

Ta có : xy-45=35-5y

<=> xy+5y= 35+45

<=> y(x+5) = 80

*Nếu x= -5 thì ta có y( -5 +5 ) = 80

<=> 0=80( Vô nghiệm)

Suy ra :  x khác -5 

=> x+5 khác 0

Ta có : y(x+5) = 80

\(\Leftrightarrow\) \(y=\frac{80}{x+5}\)

Mà \(y\in Z\)nên \(\frac{80}{x+5}\in Z\)

\(\Leftrightarrow80⋮x+5\)\(\Leftrightarrow x+5\inƯ\left(80\right)\)

\(\Leftrightarrow x+5\in\hept{ }-80;-40;-20;-16;-10;-8;-5;-4;-2;-1;1;2;4;5;8;10;16;20;40;80\)

Bạn giải x ra , sau đó tìm ra y , chứ dài qua mình không ghi trên này được @@

3 tháng 9 2019

a) xy + 4x = 35 + 5y

=> xy + 4x - 5y = 35

=> x(y + 4) - 5(y + 4) = 15

=> (x - 5)(y + 4) = 15

=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}

Lập bảng :

x - 5 1 3 5 15
y + 4 15 5 3 1
  x 6 8 10 20
  y 11 1 -1(loại)-3(loại)

Vậy ...

3 tháng 9 2019

b)  2|x| + y2 + y = 2x + 1

Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ

Mà y2 +  y = y(y + 1) là số chẵn => 2|x| là số lẻ

                              <=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0

Với x = 0 => 20 + y2 + y = 2.0 + 1

=> 1 + y2 + y = 1

=> y(y + 1) = 0

=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)

Do x; y \(\in\)N => x = y = 0 (tm)

27 tháng 7 2020

2(x + y) + xy = x2 + y2

<=> x2 + y2 - 2x - 2y - xy = 0

<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0

<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0

<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16

<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)

Do VT = (2x - y - 2)2 \(\ge\)\(\forall\)x;y

=> VP = 16 - 3(y - 2)2 \(\ge\)

=> 3(y - 2)2 \(\le\) 16

=> (y - 2)2 \(\le\)16/3

Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}

=> y - 2 \(\in\){0; 1; -1; 2; -2}

Lập bảng:

y - 2 0 1 -1 2 -2
  y 2 3 1 4 0

Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0

<=> (2x - 4)2 = 16

<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)

<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Với y = 3 .... (tự thay vào tìm x)

11 tháng 12 2017

Ta có  2 x + 1 3 − y + 1 4 = 4 x − 2 y + 2 5 2 x − 3 4 − y − 4 3 = − 2 x + 2 y − 2

⇔ 40 x + 20 − 15 y − 15 = 48 x − 24 y + 24 6 x − 9 − 4 y + 16 = − 24 x + 24 y − 24

⇔ 8 x − 9 y = − 19 30 x − 28 y = − 31 ⇔ 120 x − 135 = − 285 120 x − 112 = − 124 ⇔ x = 11 2 y = 7

Thay x = 11 2 ; y = 7 vào phương trình 6mx – 5y = 2m – 66 ta được:

6m. 11 2 − 5.7 = 2m – 66  31m = −31  m = −1

Đáp án: A

16 tháng 12 2020

dễ vãi ra thế mà ko biết làm :))))             (đồ ngu)