K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

pt <=> \(4x^2+4x+24=4y^2\)

<=> \(\left(2x+1\right)^2-4y^2=-23\)

<=> \(\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)

TH1: \(\hept{\begin{cases}2x+1-2y=-23\\2x+1+2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=-11\\2y=12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=6\end{cases}}\)

TH2: \(\hept{\begin{cases}2x+1-2y=-1\\2x+1+2y=23\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=11\\2y=12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=5\\y=6\end{cases}}\)

TH3: \(\hept{\begin{cases}2x+1-2y=1\\2x+1+2y=-23\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=-11\\2y=-12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-6\end{cases}}\)

TH1: \(\hept{\begin{cases}2x+1-2y=23\\2x+1+2y=-1\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=11\\2y=-12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=5\\y=-6\end{cases}}\)

20 tháng 7 2021

\(4x^2=4y^6-4y^3\)

\(\Leftrightarrow4y^6-4y^3+1-4x^2=1\)

\(\Leftrightarrow\left(2y^3-1\right)^2-4x^2=1\)

\(\Leftrightarrow\left(2y^3-1-2x\right)\left(2y^3-1+2x\right)=1\)

21 tháng 2 2020

dùng denta là xong ngay ấy bạn

21 tháng 2 2020

(Đưa về phương trình bậc 2 ẩn yy, tham số xx)

Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0

Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x

Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.

Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)

Lập bảng xét giá trị ta được các giá trị của xx và yy:

x=−10→y=6tm;x=−10→y=6tm;

x=−6→y=6tm;x=−6→y=6tm;

x=−4→y=4,5ktm;x=−4→y=4,5ktm;

x=0→y=2tmx=0→y=2tm

Vậy...

22 tháng 6 2023

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)

\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)

\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)

 TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\) 

 TH2: \(xy-3x-3y+1=0\)

\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)

Từ đó ta có bảng:

\(x-3\) 1 8 2 4 -1 -8 -2 -4
\(y-3\) 8 1 4 2 -8 -1 -4 -2
\(x\) 4 11 5 7 2 -5 1 -1
\(y\) 11 4 7 5 -5 2 -1 1

Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)

Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:

\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)\(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)

NV
20 tháng 3 2022

- Với \(x< 0\Rightarrow2^x\notin Z\Rightarrow2^x+7\notin Z\) pt vô nghiệm

- Với \(x=0\) ko thỏa mãn

- Với \(x=1\Rightarrow y=\pm3\)

- Với \(x>1\Rightarrow2^x+7\) luôn lẻ \(\Rightarrow y^2\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\)

\(\Rightarrow2^x+7=\left(2k+1\right)^2\)

\(\Rightarrow2^x+6=4k\left(k+1\right)\)

\(\Rightarrow4k\left(k+1\right)-2^x=6\)

Do \(x>1\Rightarrow2^x⋮4\Rightarrow4k\left(k+1\right)-2^x⋮4\) trong khi \(6⋮̸4\)

\(\Rightarrow\) Ko tồn tại x;k thỏa mãn

Vậy \(\left(x;y\right)=\left(1;-3\right);\left(1;3\right)\)

13 tháng 1 2017

a)

\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)

\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)

13 tháng 3 2021

\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).

Từ đó \(x^2-2x-1\vdots x^2+2x-1\)

\(\Leftrightarrow4x⋮x^2+2x-1\) (1)

\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)

\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)

Từ (1), (2) suy ra \(8⋮x^2+2x-1\).

Đến đây bạn xét TH.

 

 

 

 

 

19 tháng 12 2017

đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT

rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...

19 tháng 12 2017

làm cho mk luôn đi bạn