\(2^{x-2}-3.2^x=-88\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x-2}-3.2^x=-88\)
\(\Rightarrow2^x:2^2-3.2^x=-88\)
\(\Rightarrow2^x.\left(\dfrac{1}{4}-3\right)=-88\)
\(\Rightarrow\)\(2^x.\left(-2\dfrac{3}{4}\right)=-88\)
\(\Rightarrow\)\(2^x=\)32
=> x=5
2^x+3+3.2^x=88
=>2^x.2^3+3.2^x=88
=>2^x.(8+3)=88
=>2^x.11=88
2^x=8
2^x=2^3
vậy x=3
\(2^{x-2}-3.2^x=-88\)
\(2^x:2^2-2^x:\frac{1}{3}=-88\)
\(2^x:\left(2^2-\frac{1}{3}\right)=-88\)
\(2^x:\frac{11}{3}=-88\)
\(2^x=-88.\frac{11}{3}\)
\(2^x=\frac{-968}{3}\)
\(2^{x-2}-\)\(3.2^x=-88\)
\(2^x:2^2-2^x.3=-88\)
\(2^x.\frac{1}{4}-\)\(2^x.3=-88\)
\(2^x.\left(\frac{1}{4}-3\right)=-88\)
\(2^x.\frac{-11}{4}=-88\)
\(2^x=-88:\frac{-11}{4}\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
\(10+2\cdot x=4^5:4^3\)
\(\Rightarrow10+2\cdot x=4^{5-3}\)
\(\Rightarrow10+2\cdot x=4^2\)
\(\Rightarrow10+2\cdot x=16\)
\(\Rightarrow2\cdot x=16-10\)
\(\Rightarrow2\cdot x=6\)
\(\Rightarrow x=\dfrac{6}{2}=3\)
__________________
\(2\cdot x-6^2:18=3\cdot2^2\)
\(\Rightarrow2\cdot x-36:18=12\)
\(\Rightarrow2\cdot x-2=12\)
\(\Rightarrow2\cdot x=12+2\)
\(\Rightarrow2\cdot x=14\)
\(\Rightarrow x=\dfrac{14}{2}=7\)
_________________
\(70-5\cdot\left(x-3\right)=3\cdot2\)
\(\Rightarrow70-5\cdot\left(x-3\right)=6\)
\(\Rightarrow70-5x+15=6\)
\(\Rightarrow-5x+15=6-70\)
\(\Rightarrow-5x+15=64\)
\(\Rightarrow-5x=64-15\)
\(\Rightarrow-5x=49\)
\(\Rightarrow x=-\dfrac{49}{5}\)
\(x\)(\(x\) - 2) = 16
\(x^2\) - 2\(x\) - 16 = 0
(\(x^2\) - \(x\)) - (\(x\) - 1) - 17 = 0
\(x\)(\(x\) - 1) - (\(x-1\)) = 17
(\(x\) - 1)(\(x\) - 1) = 17
(\(x-1\))2 = 17
\(\left[{}\begin{matrix}x-1=\sqrt{17}\\x-1=-\sqrt{17}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1+\sqrt{17}\\x=1-\sqrt{17}\end{matrix}\right.\)
Vậy: \(\in\) {1 - \(\sqrt{17}\); 1 + \(\sqrt{17}\)}
Bài 2:
2\(x\) + 3.2\(x\) = 144
2\(x\).(1 + 3) = 144
2\(x\).4 = 144
2\(x\) = 144 : 4
2\(x\) = 36
2\(^x\) = 36
Nếu \(x\) = 6 ⇒ 2\(^x\) = 64 > 36 (loại)
Nếu \(x\) ≤ 5 ⇒2\(^x\) ≤ 25 = 32 < 36 (loại)
Vậy \(x\in\) \(\varnothing\)
\(=\dfrac{3\cdot2^{x+1}}{2^{x+3}}=\dfrac{3}{2^2}=\dfrac{3}{4}\)
\(2^{x-3}-3.2^x=-92\)
\(\Rightarrow2^x\left(2^{-3}-3\right)=-92\)
\(\Rightarrow2^x.\dfrac{-23}{8}=-92\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\Rightarrow x=5\)
\(2^{x-2}-3.2^x=-88\)
\(\Leftrightarrow2^x.\frac{1}{4}-3.2^x=-88\)
\(\Leftrightarrow2^x\left(\frac{1}{4}-3\right)=-88\)
\(\Leftrightarrow2^x.\frac{-11}{4}=-88\)
\(\Leftrightarrow2^x=-88.\frac{-4}{11}\)
\(\Leftrightarrow2^x=-8.\left(-4\right)\)
\(\Leftrightarrow2^x=32=2^5\)
\(\Leftrightarrow x=5\)
Vậy x = 5