K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Đề sai không bạn

6 tháng 11 2019

ko sai nhưng khó

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. Không phân tích được thành nhân tử

b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)

(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)

c.

$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$

$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$

 

31 tháng 7 2021

Đề câu a là +1, câu b là -2 ạbucminh

Giải lại giúp mk vs ạ

19 tháng 5 2021

Ta có:

\(\left(x^4+2x^3-x-2\right)+\left(4x^2+4x+4\right)\)

\(=\left[\left(x^4+2x^3\right)-\left(x+2\right)\right]+4\left(x^2+x+1\right)\)

\(=\left[x^3\left(x+2\right)-\left(x-2\right)\right]+4\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)+4\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[\left(x-1\right)\left(x+2\right)+4\right]\)

\(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)

27 tháng 8 2021

a) \(x^4-4x^2-4x-1=\left(x^4-1\right)-4x\left(x+1\right)=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-4x\left(x+1\right)=\left(x+1\right)\left[\left(x^2+1\right)\left(x-1\right)-4x\right]=\left(x+1\right)\left(x^3-x^2+x-1-4x\right)=\left(x+1\right)\left(x^3-x^2-3x-1\right)\)

b) \(10x^4y^2-10x^3y^2-10x^2y^2+10xy^2=10xy^2\left(x^3-x^2-x+1\right)=10xy^2\left(x-1\right)^2\left(x+1\right)\)

a: \(x^4-4x^2-4x-1\)

\(=\left(x^4-1\right)-4x\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-4x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x-x^2-1-4x\right)\)

\(=\left(x+1\right)\left(x^3-x^2-3x-1\right)\)

b: \(10x^4y^2-10x^3y^2-10x^2y^2+10xy^2\)

\(=10xy^2\left(x^3-x^2-x+1\right)\)

\(=10xy^2\cdot\left[\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\right]\)

\(=10xy^2\cdot\left(x+1\right)\left(x-1\right)^2\)

17 tháng 10 2021

undefined

17 tháng 10 2021

undefined

2 tháng 8 2023

\(a,36-4x^2+20xy-25y^2\\ =36-\left(4x^2-20xy+25y^2\right)\\ =6^2-\left[\left(2x\right)^2-2.2x.5y+\left(5y\right)^2\right]\\ =6^2-\left(2x-5y\right)^2\\ =\left[6-\left(2x-5y\right)\right]\left[6+\left(2x-5y\right)\right]\\ =\left(6-2x+5y\right).\left(6+2x-5y\right)\)

2 tháng 8 2023

a/

\(=6^2-\left[\left(2x\right)^2-2.2x.5y+\left(5y\right)^2\right]=\)

\(6^2-\left(2x-5y\right)^2=\left[6-\left(2x-5y\right)\right].\left[6+\left(2x-5y\right)\right]\)

 

 

29 tháng 10 2021

\(=x^4-3x^3+x^3-3x^2-x^2+3x+x-3\)

\(=\left(x-3\right)\left(x^3+x^2-x+1\right)\)

9 tháng 12 2023

a) x² - 9

= x² - 3²

= (x - 3)(x + 3)

b) 4x² - 1

= (2x)² - 1²

= (2x - 1)(2x + 1)

c) x⁴ - 16

= (x²)² - 4²

= (x² - 4)(x² + 4)

= (x² - 2²)(x² + 4)

= (x - 2)(x + 2)(x + 4)

d) x² - 4x + 4

= x² - 2.x.2 + 2²

= (x - 2)²

e) x³ - 8

= x³ - 2³

= (x - 2)(x² + 2x + 4)

f) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

17 tháng 7 2021

a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

 

a) Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)