K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 10 2019

\(P\le\sqrt{\left(1+1\right)\left(x-1+9-x\right)}=\sqrt{16}=4\) (Bunhiacopxki)

\(\Rightarrow P_{max}=4\) khi \(x-1=9-x\Rightarrow x=5\)

\(P=\sqrt{x-1}+\sqrt{9-x}\ge\sqrt{x-1+9-x}=2\sqrt{2}\)

\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(\left[{}\begin{matrix}x-1=0\\9-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

NV
10 tháng 5 2021

Đề bài sai, sửa đề: \(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)

Đặt \(P=\sqrt{x^2+y^2}+\sqrt{xy}>0\)

\(\Rightarrow P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}\ge x^2+y^2+xy+2\sqrt{2xy.xy}\)

\(\Rightarrow P^2\ge x^2+y^2+\left(2\sqrt{2}+1\right)xy\ge x^2+y^2+2xy=4\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;0\right);\left(0;2\right)\)

Lại có: \(P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}=x^2+y^2+xy+\sqrt{4xy.\left(x^2+y^2\right)}\)

\(\Rightarrow P^2\le x^2+y^2+xy+\dfrac{1}{2}\left(4xy+x^2+y^2\right)=\dfrac{3}{2}\left(x+y\right)^2=6\)

\(\Rightarrow P\le\sqrt{6}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{3}}{3};\dfrac{3+\sqrt{3}}{3}\right)\)

NV
5 tháng 2 2021

\(A=2x\left(6-x\right)\le\dfrac{1}{2}\left(x+6-x\right)^2=18\)

Dấu "=" xảy ra khi \(x=3\)

\(B^2=x^2\left(9-x\right)=-x^3+9x^2\)

\(B^2=-x^3+9x^2-108+108=108-\left(x-6\right)^2\left(x+3\right)\le108\)

\(\Leftrightarrow B\le6\sqrt{3}\)

\(C^2=\left(6-x\right)^2x=32-\left(8-x\right)\left(x-2\right)^2\le32\)

\(\Rightarrow C\le4\sqrt{2}\)

23 tháng 9 2015

Bình phương A ta được A=\(8+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

A min khi (x-2)(6-x) nhỏ nhất tương đương vs x=2 hoặc x=6. khi đó A=2 là nhỏ nhất

A max khi (x-2)(6-x) lớn nhất do 2 số kia có tổng ko đổi nên tích lớn nhất khi x-2=6-x tương đương với x=4

khi đó A=4 là lớn nhất

23 tháng 9 2015

\(A^2=x-2+6-x+2\text{ }\sqrt{\left(x-2\right)\left(6-x\right)}=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Vậy GTNN là 2 tại A x = 2 ; x = 6 

Vì  \(2\sqrt{\left(x-2\right)\left(6-x\right)}\le x-2+6-x=4\)

=> \(A^2\le4+4=8\Rightarrow A\le2\sqrt{2}\)

Vậy GTLN của A là ... tại x = 4 

15 tháng 11 2016

1.ap dung bdt bunhiacopski

2.Ap dung Bdt can a + can b >= can (a+b) de tim min

Bunhiacopski de tim max

13 tháng 5 2020

ở xã hội này chỉ có làm mới có ăn những loại không làm mà đòi ăn thì ăn đầu bòi ăn cut nháa

DD
13 tháng 5 2021

\(x^3+y^3+xy=x^2+y^2\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)

\(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).

\(x+y=1\Rightarrow0\le x,y\le1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)

Dấu \(=\)xảy ra tại \(x=0,y=1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)

Dấu \(=\)xảy ra tại \(x=1,y=0\).

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)