Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng bất đẳng thức bunyakovsky:
\(P^2=\left(\sqrt{x}\sqrt{x+xy}+\sqrt{y}\sqrt{y+xy}\right)^2\le\left(x+y\right)\left(x+y+2xy\right)=1+2xy\)
Áp dụng bất đẳng thức cauchy: \(xy\le\frac{1}{4}\left(x+y\right)^2=\frac{1}{4}\)
khi đó \(P^2\le1+\frac{1}{2}=\frac{3}{2}\)
\(\Leftrightarrow P\le\sqrt{\frac{3}{2}}\)
đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
anh chi oi giup em cau nay voi:cho x+y=4. tim gtln cua: a=(x-2)y+2017
\(x^3+y^3+xy=x^2+y^2\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)
- \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).
- \(x+y=1\Rightarrow0\le x,y\le1\).
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)
Dấu \(=\)xảy ra tại \(x=0,y=1\).
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)
Dấu \(=\)xảy ra tại \(x=1,y=0\).
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
1.ap dung bdt bunhiacopski
2.Ap dung Bdt can a + can b >= can (a+b) de tim min
Bunhiacopski de tim max
ở xã hội này chỉ có làm mới có ăn những loại không làm mà đòi ăn thì ăn đầu bòi ăn cut nháa
*)Maximize : Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2\le\left(1+1\right)\left(x+1+y+1\right)=2\left(x+y+2\right)\)
Và \(VP^2=\left(\sqrt{2}\left(x+y\right)\right)^2=2\left(x+y\right)^2\)
\(\Rightarrow2\left(x+y\right)^2\le2\left(x+y+2\right)\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-2\le0\)
\(\Rightarrow\left(x+y-2\right)\left(x+y+1\right)\le0\)
\(\Rightarrow-1\le P=x+y\le2\)
Khi \(x=y=1\) thì \(P_{Max}=2\)
*)Minimize: Áp dụng BĐT Karamata ta có:
\(VT=\sqrt{2}\left(x+y\right)=\sqrt{x+1}+\sqrt{y+1}=VP\)
\(\ge\sqrt{0}+\sqrt{x+1+y+1}\)
\(\Rightarrow\sqrt{2}\left(x+y\right)\ge\sqrt{x+1+y+1}\)
\(\Rightarrow2\left(x+y\right)^2\ge\left(x+y\right)+2\)
\(\Rightarrow2\left(x+y\right)^2-\left(x+y\right)-2\ge0\)
\(\Rightarrow P=x+y\ge\frac{1+\sqrt{17}}{4}\)
Khi \(x=\frac{5+\sqrt{17}}{4};y=-1\) thì \(P_{Min}=\frac{1+\sqrt{17}}{4}\)
#Vỗ tay coi :))
Ta có điều kiện \(\hept{\begin{cases}y\ge-6\\x\ge-6\\x+y\ge0\end{cases}}\)
Theo đề bài thì: \(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)
\(\Leftrightarrow P^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)
\(\Leftrightarrow P^2-2P-24\ge0\)
\(\Leftrightarrow-4\le P\le6\)
\(\Leftrightarrow-4< P\le6\left(1\right)\)
Ta lại có:
\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)
\(\Leftrightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)
\(\Leftrightarrow\left(P+3\right)\left(P-4\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)
Từ (1) và (2) \(\Rightarrow4\le P\le6\)
Vậy GTNN là \(P=4\)đạt được khi \(\hept{\begin{cases}x=-6\\y=10\end{cases}}or\hept{\begin{cases}x=10\\y=-6\end{cases}}\)
GTLN là \(P=6\) đạt được khi \(x=y=3\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy