2n+3 + 2n = 144
2n+ 4.2 n+1 = 9.43
Giup em voi
*-*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)
\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)
b) \(2^{n+1}+4.2^n=3.2^7\)
\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)
c) \(3^{n+2}-3^{n+1}=486\)
\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)
\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)
d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)
a, 5n+1 - 5n-1 = 1254.23.3
5n-1.(52 - 1) = 1254.24
5n-1.24 = 1254.24
5n-1 = 1254
5n-1 = (53)4
5n-1 = 512
n - 1 = 12
n = 12 + 1
n = 13
b,22n-1 + 22n+2 = 3.211
22n-1.(1 + 23) = 3.211
22n-1.9 = 3.211
22n-1 = 211: 3
22n = 212 : 3 (xem lại đề bài em nhá)
Gọi d là ƯCLN của n + 1 và 2n + 3
Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d
<=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
<=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)
=> n+1 chia hết cho d; 2n+ 3 chia hết cho d
=>(n+1)-(2n+3) chia hết cho d
=>1chia hết cho d=> d thuộc Ư của 1
=.> \(\frac{n+1}{2n+3}\)là ps tối giản
b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)
=>2n+3 chia hết cho d;4n+8 chia hết cho d
=>(2n+3)-(4n+8) chia hết cho d
=>(2n+3)-(2n+4) chia hết cho d
=>-1 chia hết cho d
=>\(\frac{2n+3}{4n+8}\)là ps tối giản
Bài 1:
gọi a là ƯCLN của n+3 và 2n+5
=> a là ƯC của 2.(n+3)=2n+6 và 2n+5
=>a là Ư của (2n+6)-(2n+5)=2n+6-2n+5=1
=> a=1
vậy ƯCLN(n+3,2n+5)=1
Bài 2:
gọi a là ƯC của n+1 và 2n+5
=> 2n+5 chia hết cho a
n+1 chia hết cho a
=>(2n+5)-(n+1) chia hết cho a
=>3 chia hết cho a
=>3 chia hết cho 4 (vô lí)
vậy 4 không là ƯC của n+1 và 2n+5
Gọi UCLN(n+1,2n+3) = d
=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - (2n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(n+1,2n+3) = 1
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
Gọi UCLN(2n+1,2n+3) = d
=> 2n+1 chia hết cho d
2n+3 chia hết cho d
=> 2n+3 - (2n+1) chia hết cho d
=> 2 chia hết cho d
=> d \(\in\){1;2}
Vì 2n+1 lẻ nên d = 1
=>UCLN(2n+1,2n+3) = 1
Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản
a, với n thuộc Z
Để A là phân số <=> 2n + 1 thuộc Z
2n thuộc Z
2n khác 0
=> n khác 0 thì A là phân số
b, để A là số nguyên thì 2n + 1 chia hết cho 2n
mà 2n chia hết cho 2n
=> ( 2n +1) - ( 2n) chia hết cho 2n
2n+3 + 2n = 144
<=> 2n(23 + 1 ) = 144
<=> 2n.9 = 144
<=> 2n = 16
<=> 2n = 24
<=> n= 4
2n+ 4.2 n+1 = 9.43
<=> 2n + 2n+3 = 9.26
<=> 2n( 1 + 23 ) = 9.26
<=> 2n.9 = 9.26
<=> 2n = 26
<=> n = 6
#_W
Tìm n
a) 2n + 3 + 2n = 144
=> 2n.23 + 2n = 144
=> 2n.8 + 2n = 144
=> 2n.(8 + 1) = 144
=> 2n.9 = 144
=> 2n = 144 : 9
=> 2n = 16
=> 2n = 24
=> n = 4
Vậy n = 4
b) 2n + 4.2n + 1 = 9.43
=> 2n + 22.2n + 1 = 9.(22)3
=> 2n + 2n + 3 = 9.22.3
=> 2n + 2n.23 = 9.26
=> 2n + 2n.8 = 9.26
=> 2n.(1 + 8) = 9.26
=> 2n.9 = 9.26
=> 2n = 26
=> n = 6
Vậy n = 6