K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

a, 5n+1 - 5n-1 = 1254.23.3

5n-1.(52 - 1) = 1254.24

5n-1.24         = 1254.24

5n-1             = 1254

5n-1             = (53)4

5n-1            = 512

n - 1           = 12

n                = 12 + 1

n                = 13

b,22n-1 + 22n+2 = 3.211

   22n-1.(1 + 23) = 3.211

  22n-1.9 = 3.211

 22n-1      = 211: 3

22n        = 212 : 3 (xem lại đề bài em nhá)

 

1 tháng 7 2018

Ta có : 

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(A=\frac{4-1}{1^2.2^2}+\frac{9-4}{2^2.3^2}+...+\frac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}\)

\(A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+...+\frac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}\)

\(A=\frac{2^2}{1^2.2^2}-\frac{1^2}{1^2.2^2}+\frac{3^2}{2^2.3^2}-\frac{2^2}{2^2.3^2}+...+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}-\frac{n^2}{n^2\left(n+1\right)^2}\)

\(A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

\(A=1-\frac{1}{\left(n+1\right)^2}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(3.2\right)^2}+...+\frac{2n+1}{\left[n.\left(n+1\right)\right]^2}\)

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{2n+1}{n^2.\left(n+1\right)^2}\)

\(A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+...+\frac{\left(n+1\right)^2-n^2}{n^2.\left(n+1\right)^2}\)

\(A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(A=1-\frac{1}{\left(n+1\right)^2}\)

mk chỉ làm được đến đấy thôi

10 tháng 7 2019

a. \(\left(\frac{-1}{5}\right)^n=\frac{-1}{125}\)

<=> \(\left(\frac{-1}{5}\right)^n=\left(\frac{-1}{5}\right)^3\)

<=> n = 3

b. \(\left(\frac{-2}{11}\right)^m=\frac{4}{121}\)

<=> \(\left(\frac{-2}{11}\right)^m=\left(\frac{2}{11}\right)^2\)

<=> m = 2

c. 72n + 72n+2 = 2450

<=> 72n + 72n . 72 = 2450

<=> 72n.(1+72)        = 2450

<=> 72n                  = 72

<=> 2n                  = 2

<=> n = 1

18 tháng 7 2018

a)\(\dfrac{1}{9}.27^n=3^n\)

<=>27n=3n:\(\dfrac{1}{9}\)

<=>27n:3n=\(\dfrac{1}{9}\)

<=>33n:3n=\(\dfrac{1}{9}\)

<=>32n=\(\dfrac{1}{9}\)

<=>9n=\(\dfrac{1}{9}\)

<=>9n+1=1

<=>n+1=0

<=>n=-1

vậy n=-1

5 tháng 10 2017

\(\dfrac{n-2}{4}=\dfrac{1}{4}\\ \Leftrightarrow\left(n-2\right).4=1.4\\ \Rightarrow4n-8=4\\ \Rightarrow4n=4+8\\ \Rightarrow4n=12\\ \Rightarrow n=12:4=3\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

24 tháng 9 2016

help me !!!

22 tháng 10 2017

a) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

\(\Rightarrow2n-1=3\)

\(\Rightarrow2n=4\)

\(\Rightarrow n=2\)

22 tháng 10 2017

a) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow2^{-\left(2n-1\right)}=2^{-3}\)

\(\Rightarrow2^{-2n+1}=2^{-3}\)

\(\Rightarrow-2n+1=-3\)

\(\Rightarrow-2n=-4\)

\(\Rightarrow n=-2\)

Vậy ...

b) \(\left(\dfrac{7}{5}\right)^n=\dfrac{343}{125}\)

\(\Rightarrow\left(\dfrac{7}{5}\right)^n=\left(\dfrac{7}{5}\right)^3\)

\(\Rightarrow n=3\)

Vậy ....

13 tháng 7 2023

a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)

\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)

b) \(2^{n+1}+4.2^n=3.2^7\)

\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)

c) \(3^{n+2}-3^{n+1}=486\)

\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)

\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)

d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)