Cho tam giác ABC vuông tại A, AB = 12 cm, BC = 13 cm. Gọi M, N lần lượt là trung điểm của AB, BC.
a/ C/m: MN vuông góc với AB
b/ Tính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BMN va BAC ta có:
\(\frac{BM}{BA}=\frac{BN}{BC}=\frac{1}{2}\)(vì M là trung điểm của AB, N là trung điểm của BC)
góc B chung
=> tam giác BMN đồng dạng với tam giác BAC ( c-g-c)
=> góc M=góc A = 90 độ
Vậy MN vuông góc với AB
b)
\(MN=\sqrt{BN^2-BM^2}\)
\(\Rightarrow MN=\sqrt{\frac{13}{2}^2-6^2}\)
\(\Rightarrow MN=\frac{5}{2}\)
Bài 1:
Xét ΔBMC có
N là trung điểm của BM
I là trung điểm của BC
Do đó: NI là đường trung bình của ΔBMC
Suy ra: NI//MK
Xét ΔANI có
M là trung điểm của AN
MK//NI
Do đó: K là trung điểm của AI
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình của tam giác ABC
=> MN//AC
Mà AB⊥AC
=> MN⊥AB
b) Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=5\left(cm\right)\)
Xét tam giác ABC có
MN là đường trung bình
=> \(MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=\dfrac{5}{2}\left(cm\right)\)
a) Diện tích của tam giác ABC là:
\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)
b) Ta có: N là trung điểm của AB
M là trung điểm của BC
=> MN là đường trung bình của tam giác ABC
\(\Rightarrow MN//AC\)
Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)
Suy ra: \(MN\perp AB\)
c) Trong tứ giác AMBP:
Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)
=> Tứ giác AMBP là hình bình hành
Mà \(MN\perp AB\) (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)
=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=16(cm)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
2: Xét tứ giác AMNC có MN//AC
nên AMNC là hình thang
mà \(\widehat{A}=90^0\)
nên AMNC là hình thang vuông
a) Ta có: M là trung điểm AB
N là trung điểm BC
=> MN là đường trung bình của \(\Delta ABC\)
=> MN \\ AC .Nên MN\(\perp AB\) (đpcm)
b) Áp dụng định lý Pytago ,ta có :
AB2 + AC2 = BC2
AC2 = 132 - 122
=> AC = 5 cm
Lại có: MN =\(\frac{1}{2}AC\)(T/c đtb)
=> MN = \(\frac{1}{2}5\)= 2.5 cm