Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông cân tại A
mà AM là trung tuyến
nên AM là phân giác của góc BAC
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
=>AEDF là hình vuông
b: AEDF là hình vuông
=>góc AEF=45 độ
=>góc AEF=góc ABC
=>EF//BC
a: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là phân giác của \(\widehat{BAC}\)
Xét tứ giác AMEN có \(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)
=>AMEN là hình chữ nhật
Xét hình chữ nhật AMEN có AE là phân giác của \(\widehat{MAN}\)
nên AMEN là hình vuông
b: AMEN là hình vuông
=>\(\widehat{AMN}=45^0\)
=>\(\widehat{AMN}=\widehat{ABC}\)
mà hai góc này ở vị trí đồng vị
nên MN//BC
c: AMEN là hình vuông
=>A,M,E,N cùng thuộc đường tròn tâm O, đường kính là AE và MN
=>O là trung điểm chung của AE và MN(2)
\(\widehat{MFN}=90^0\)
=>F nằm trên đường tròn đường kính MN
=>F nằm trên (O)
Xét (O) có
ΔAFE nội tiếp
AE là đường kính
Do đó: ΔAFE vuông tại F
=>\(\widehat{AFE}=90^0\)
a: ta có: BH\(\perp\)AC
CK\(\perp\)AC
Do đó: BH//CK
Ta có: CH\(\perp\)AB
BK\(\perp\)BA
Do đó: CH//BK
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: Ta có: BHCKlà hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
=>H,M,K thẳng hàng
a, Ta có:
- BH là đường cao của tam giác ABC, nên BH vuông góc với AC.
- CK là đường cao của tam giác ABC, nên CK vuông góc với AB.
- Vì BH và CK đều vuông góc với hai cạnh AB và AC của tam giác ABC, nên BHCK là hình bình hành.
b, Gọi M là trung điểm của BC. Ta cần chứng minh CM, HM và KM thẳng hàng.
- Vì M là trung điểm của BC, nên BM = MC.
- Ta có BHCK là hình bình hành, nên BH = CK.
- Vì BH và CK là đường cao của tam giác ABC, nên BH = 2HM và CK = 2KM.
- Từ đó, ta có BM = MC = HM = KM.
- Vì BM = MC và HM = KM, nên CM, HM và KM thẳng hàng.
Vậy, ta đã chứng minh được CM, HM và KM thẳng hàng.
a: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//HK
b: AC//HK
AC//HM
HK cắt HM tại H
=>H,M,K thẳng hàng
=>NC//MK
AHKC là hình bình hành
=>góc CKH=góc CAH
mà góc CAH=góc NMH(AMHN là hình chữ nhật)
nên góc CKM=góc NMK
=>CNMK là hình thang cân
c: AMHN là hình chữ nhật
=>O là trung điểm chung của AH và MN
Xét ΔCAH có
CO,AI là trung tuyến
CO cắt AI tại D
=>D là trọng tâm
=>AD=2/3AI=2/3*1/2*AK=1/3AK
=>AK=3AD
ABDC E
a) Vì AD phân giác BACˆBAC^ (gt)
=> ABAC=BDDCABAC=BDDC (t/c đường p/g ΔΔ )
=> ABAC+AB=BDBD+DCABAC+AB=BDBD+DC (t/c TLT)
=> 1212+20=BDBC1212+20=BDBC
=> 1232=BD281232=BD28
=> BD=12⋅2832=10,5BD=12⋅2832=10,5 cm
Ta có: BD+DC=BCBD+DC=BC (D ∈∈ BC)
=> DC=28−10,5=17,5DC=28−10,5=17,5 cm
Xét ΔΔ ABC có: DE // AB (gt)
=> DEAB=DCBCDEAB=DCBC (hệ qủa ĐL Ta-lét)
=> DE=AB⋅DCBC=12⋅17,528=7,5DE=AB⋅DCBC=12⋅17,528=7,5 cm
MK vẽ hình ko chính xac lam bn thông cảm hen!!!
a) Xét ΔABC,có: AB2 + AC2 = 162 + 122 = 400
BC2 = 202 = 400
Do đó AB2 + AC2 = BC2
Theo ĐL Pytago đảo, ΔABC vuông tại A
b) Do AB vuông góc AC
MF vuông góc AC
Nên MF // AB
Xét ΔABC có: MB=MC(gt)
MF// AB(cm trên)
Suy ra MF là đường TB của ΔABC
=> F là trung điểm AC
Vậy FA=FC(đpcm)
c) Xét ΔABC có : MB = MC(gt)
MA = ME (gt)
Nên ME là đường TB của ΔABC
=> ME // AC ; ME =\(\frac{1}{2}\)AC
Mà AC vuông góc AB (cm trên)
Vậy ME vuông góc với AB
Do AC= 12 cm (gt)
Nên ME = 1/2 AC = 12/2= 6cm
Vậy ME= 6cm.
Bài 1:
Xét ΔBMC có
N là trung điểm của BM
I là trung điểm của BC
Do đó: NI là đường trung bình của ΔBMC
Suy ra: NI//MK
Xét ΔANI có
M là trung điểm của AN
MK//NI
Do đó: K là trung điểm của AI
em cảm ơn ạ