K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Vì \(p^2;q^2\)là số chính phương 

=> \(p^2;q^2\)chia 5 luôn dư 0,1,4

Mà 886 chia 5 dư 1

=> p^2 chia hết cho 5 , q^2 chia 5 dư 1 và ngược lại

Mà p là số nguyên tố

nên \(p=5\)=> \(q=29\)thỏa mãn q là số nguyên tố 

Vậy \(\left(p,q\right)=\left(5;29\right),\left(29;5\right)\)

11 tháng 7 2019

Ta có \(p^2+q^2=866\)

=> \(p^2;q^2\) cùng lẻ hoặc cùng chẵn

Vì p, q là hai số nguyên tố

=> \(p^2;q^2\)cùng lẻ

Ta lại có:  \(p^2+q^2=866\)có chữ số tận cùng là 6

Không mất tính tổng quát : G/s chữ số tận cùng của \(p^2\) lớn hơn hoặc bằng chữ số tận cùng của \(q^2\)

TH1: \(q^2\) có chữ số tận cùng là 1 ; \(p^2\) có chữ số tận cùng là 5

=> \(p^2\) chia hết cho 5 => \(p⋮5\)

=> p=5 => \(p^2=25\Rightarrow25+q^2=866\Rightarrow q^2=841=29^2\Rightarrow q=29\)

=> \(p=5;q=29\) thỏa mãn

TH2:  \(q^2\) có chữ số tận cùng là 3 ; \(p^2\) có chữ số tận cùng là 3 

Trường hợp này loại vì tận cùng của một số chính phương không thể là số 3

TH3:  \(q^2\) có chữ số tận cùng là 7; \(p^2\) có chữ số tận cùng là 9

Trường hợp này loại vì tận cùng của một số chính phương không thể là số 7

Kết luận : p=5; q=29 hoặc p=29;q=5 

16 tháng 4 2022

-Vì p,q là 2 số nguyên tố lớn hơn 3 \(\Rightarrow\)p,q có dạng \(3k+1\) hoặc \(3h+2\).

-Có: \(p^2-q^2=p^2+pq-pq-q^2=p\left(p+q\right)-q\left(p+q\right)=\left(p+q\right)\left(p-q\right)\).

*\(p=3k+1;q=3h+2\).

\(p^2-q^2=\left(3k+1+3h+2\right)\left(3k+1-3h-2\right)=\left(3k+3h+3\right)\left(3k+1-3h-2\right)⋮3\)

-Các trường hợp p,q có cùng số dư (1 hoặc 2) khi chia cho 3:

\(\Rightarrow\left(p^2-q^2\right)⋮3̸\).

-Vậy \(\left(p^2-q^2\right)⋮3\)

 

11 tháng 11 2020

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

24 tháng 11 2016

p^2+q^2+r^2=3^2+5^2+7^2=83

          k cho mình nha!

NV
2 tháng 1 2024

Do \(2q^2\) luôn chẵn và 1 luôn lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p\) lẻ

\(\Rightarrow p^2\equiv1\left(mod4\right)\)

\(\Rightarrow2q^2\equiv0\left(mod4\right)\)

\(\Rightarrow q^2⋮2\Rightarrow q⋮2\Rightarrow q=2\)

\(\Rightarrow p^2=9\Rightarrow p=3\)

Vậy \(\left(p;q\right)=\left(3;2\right)\)

1 tháng 11 2018

p1=2

p2=3

p3=5

p4=7

p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố

đúng thì tk nha

1 tháng 11 2018

Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4)                (1)

Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số

Suy ra chúgn lần lượt là.........(1)