Tìm hai số nguyên tố p,q biết rằng p2 +q2=866
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Vì p,q là 2 số nguyên tố lớn hơn 3 \(\Rightarrow\)p,q có dạng \(3k+1\) hoặc \(3h+2\).
-Có: \(p^2-q^2=p^2+pq-pq-q^2=p\left(p+q\right)-q\left(p+q\right)=\left(p+q\right)\left(p-q\right)\).
*\(p=3k+1;q=3h+2\).
\(p^2-q^2=\left(3k+1+3h+2\right)\left(3k+1-3h-2\right)=\left(3k+3h+3\right)\left(3k+1-3h-2\right)⋮3\)
-Các trường hợp p,q có cùng số dư (1 hoặc 2) khi chia cho 3:
\(\Rightarrow\left(p^2-q^2\right)⋮3̸\).
-Vậy \(\left(p^2-q^2\right)⋮3\)
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Do \(2q^2\) luôn chẵn và 1 luôn lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p\) lẻ
\(\Rightarrow p^2\equiv1\left(mod4\right)\)
\(\Rightarrow2q^2\equiv0\left(mod4\right)\)
\(\Rightarrow q^2⋮2\Rightarrow q⋮2\Rightarrow q=2\)
\(\Rightarrow p^2=9\Rightarrow p=3\)
Vậy \(\left(p;q\right)=\left(3;2\right)\)
p1=2
p2=3
p3=5
p4=7
p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố
đúng thì tk nha
Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4) (1)
Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số
Suy ra chúgn lần lượt là.........(1)
Vì \(p^2;q^2\)là số chính phương
=> \(p^2;q^2\)chia 5 luôn dư 0,1,4
Mà 886 chia 5 dư 1
=> p^2 chia hết cho 5 , q^2 chia 5 dư 1 và ngược lại
Mà p là số nguyên tố
nên \(p=5\)=> \(q=29\)thỏa mãn q là số nguyên tố
Vậy \(\left(p,q\right)=\left(5;29\right),\left(29;5\right)\)
Ta có \(p^2+q^2=866\)
=> \(p^2;q^2\) cùng lẻ hoặc cùng chẵn
Vì p, q là hai số nguyên tố
=> \(p^2;q^2\)cùng lẻ
Ta lại có: \(p^2+q^2=866\)có chữ số tận cùng là 6
Không mất tính tổng quát : G/s chữ số tận cùng của \(p^2\) lớn hơn hoặc bằng chữ số tận cùng của \(q^2\)
TH1: \(q^2\) có chữ số tận cùng là 1 ; \(p^2\) có chữ số tận cùng là 5
=> \(p^2\) chia hết cho 5 => \(p⋮5\)
=> p=5 => \(p^2=25\Rightarrow25+q^2=866\Rightarrow q^2=841=29^2\Rightarrow q=29\)
=> \(p=5;q=29\) thỏa mãn
TH2: \(q^2\) có chữ số tận cùng là 3 ; \(p^2\) có chữ số tận cùng là 3
Trường hợp này loại vì tận cùng của một số chính phương không thể là số 3
TH3: \(q^2\) có chữ số tận cùng là 7; \(p^2\) có chữ số tận cùng là 9
Trường hợp này loại vì tận cùng của một số chính phương không thể là số 7
Kết luận : p=5; q=29 hoặc p=29;q=5