K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)

20 tháng 1 2019

bài tớ sai rồi -_-' chưa lại hộ

\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)

13 tháng 9 2020

Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.

Bài 3:

a) Xét tam giác AOB: \(OB>AB-AO\)

Xét tam giác DOC: \(OD>DC-OC\)

Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)

b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:

\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)

Bài 4: 

a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:

\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)

b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà

Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:

\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)

Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)

Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)

16 tháng 12 2023

1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)

Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ

Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ

 a2+ b= 2234 không chia hết cho 5

Giả sử cả a2, b2 đều không chia hết cho 5

-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)

Mà a2+ b= 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai

Giả sử a=5 -> a2= 25

b2= 2209

b2= 472

-> b=47

                    Vậy hai số cần tìm là 5 và 47

 

16 tháng 12 2018

\(\left(2x-1\right)\left(x-5\right)-x^2+10x-25=0\)

\(\left(2x-1\right)\left(x-5\right)-\left(x^2-10x+25\right)=0\)

\(\left(2x-1\right)\left(x-5\right)-\left(x-5\right)^2=0\)

\(\left(x-5\right)\left(2x-1-x+5\right)=0\)

\(\left(x-5\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

16 tháng 12 2018

\(\left(5n-3\right)^2-9=\left(5n-3\right)^2-3^2=\left(5n-3-3\right)\left(5n-3+3\right)=5n\left(5n-6\right)\)

Ta có: \(5⋮5\)

\(\Rightarrow5n\left(5n-6\right)⋮5\forall n\in Z\)

\(\Rightarrow\left(5n-3\right)^2-9⋮5\forall n\in Z\)

                                  đpcm

28 tháng 3 2018

câu 2 nề

A=\(\frac{2x+1}{x^2+2}\)=\(\frac{x^2+2-2x-x^2-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}\)-\(\frac{x^2+2x+1}{x^2+2}\) 1- \(\frac{x^2+2x+1}{x^2+2}\)= 1- \(\frac{\left(x+1\right)^2}{x^2+2}\)

vậy max A = 1 khi x= -1

28 tháng 3 2018

mình bik câu 1,3 r. Cần câu 2 thôi. Giúp mình với

28 tháng 6 2019
https://i.imgur.com/9a9DKSL.jpg
29 tháng 6 2019

VT là j z bn

30 tháng 6 2017

(n+7) - (n-5)2

=(n+7-n+5)(n+7+n-5

= (n-n+7+5)(n+n+7-5)

= 12(2n+2)

24n+24=> 24(n+1) \(⋮\) 24 => (n+7) - (n-5)2\(⋮\) 24

30 tháng 6 2017

a)

(n+7)2-(n-5)2=[(n+7)-(n-5)][(n+7)+(n-5)]=(n+7-n+5)(n+7+n-5)=12(2n+2)=12.2.(n+1)=24(n+1) chia hết cho 24(đpcm)

b) Gọi 2 số lẻ liên tiếp lần lượt là 2k+1 và 2k+3

(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+1+2k+3)=2(4k+4)=2.4.(k+1)=8(k+1) chia hết cho 8(đpcm)

10 tháng 5 2017

Em chuyển 9x = 8y - 31 thành 8b - 9b = 31 cho dễ làm ạ 

Từ \(8b-9a=31\Rightarrow b=\frac{31+9a}{8}=\frac{32-1+8a+a}{8}\in N\)

\(\Rightarrow a-1⋮8\Rightarrow a=8k+1\left(k\in N\right)\Rightarrow b=\frac{31+72k+9}{8}=9k+5\)

\(\Rightarrow\frac{a}{b}=\frac{8k+1}{9k+5}\)Mà \(\frac{11}{17}< \frac{a}{b}< \frac{2329\Rightarrow11}{17}< \frac{8k+1}{9k+5}< \frac{23}{29} \)

+ Với \(\frac{11}{17}< \frac{8k+1}{9k+5}\Rightarrow11.\left(9k+5\right)< 17.\left(8k+1\right)\Rightarrow99k+55< 136k+17\Rightarrow37k>38\)

\(\Rightarrow k>\frac{38}{37}\Rightarrow k>1\)                                     (1)

Với \(\frac{8k+1}{9k+5}< \frac{23}{29}\Rightarrow29.\left(8k+1\right)< 23.\left(9k+5\right)\Rightarrow232k+29< 207k+115\Rightarrow25k< 86\)

\(\Rightarrow k< \frac{86}{25}\Rightarrow k< 4\)                                       (2)

Từ (1) và (2) suy ra \(1< k< 4\)mà \(k\in N\)nên \(k\in\left\{2;3\right\}\)

Với \(k=2\)thì \(\frac{a}{b}=\frac{17}{25}\)

Với \(k=3\)thì \(\frac{a}{b}=\frac{25}{32}\)

Vậy............