Cho tam giác ABC , đường trung tuyến AM , BN , CP . Chứng minh BN +CP > 3/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của ba đường trung tuyến AM, BN, CP là G (G là trọng tâm)
Theo tính chất trọng tâm. Ta có: \(BG+CG=\frac{2}{3}\left(BN+CP\right)\) (1)
Mặt khác theo BĐT tam giác: \(BG+CG>BC\) (2)
Từ (1) và (2) suy ra \(\frac{2}{3}\left(BN+CP\right)>BC\). Nhân \(\frac{3}{2}\) vào hai vế của BĐT ta được:
\(BN+CP>\frac{3}{2}BC\) (đpcm)
Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\)độ dài đường trung tuyến đi qua đỉnh ấy nên:
\(\begin{array}{l}\dfrac{{GA}}{{AM}} = \dfrac{{GB}}{{BN}} = \dfrac{{GC}}{{CP}} = \dfrac{2}{3}\\ \to GA = \dfrac{2}{3}AM;GB = \dfrac{2}{3}BN;GC = \dfrac{2}{3}CP\end{array}\)
Vậy:
\(GA + GB + GC = \dfrac{2}{3}AM + \dfrac{2}{3}BN + \dfrac{2}{3}CP = \dfrac{2}{3}(AM + BN + CP)\).
Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm a, Tính HM,PA,GB. b, Chứng minh tam giác HPG cân
Gọi G là trọng tâm tam giác ABC
Vì là trung tuyến \(\Rightarrow\hept{\begin{cases}BN=\frac{3}{2}BG\\CP=\frac{3}{2}CG\end{cases}}\)
\(\Rightarrow BN+CP=\frac{3}{2}\left(BG+CG\right)\)
Mà theo bđt trong tam giác cho tam giác BGC thì \(BG+GC>BC\)
\(\Rightarrow BN+CP>\frac{3}{2}BC\)