Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
AM,CP,BN là trung tuyến
AM cắt CP cắt BN tại G
=>G là trọng tâm
=>BG=2/3BN; CG=2/3CP; AG=2/3AM
=>BK=KG=GN=1/3BN
=>GK=1/3BN; GM=1/3AM
Xet ΔBGC có BM/BC=BK/BG
nên MK//GC và MK/GC=BM/BC=1/2
=>MK=1/2GC=1/2*2/3*CP=1/3CP
Hình tự vẽ
a) Ta có :
AG = GD . Mà GM = \(\frac{1}{2}\) AG
=> GD = \(\frac{1}{2}\) AG
Do AG = \(\frac{1}{3}\) AM
=> GD = \(\frac{2}{3}\) AM (*)
Xét tứ giác GBDC ta có:
BM = MC ( gt ) (1)
GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)
Từ (1)(2) => Tứ giác GBDC là hình bình hành
=> GC// và =BD ; BG // và =DC
Xét tam giác ABD ta có:
AP = P B ( gt ) ( 3)
AG = GD ( gt ) (4)
Từ (3)(4) => PG là đường trung bình của tam giác ABD
=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC
Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)
Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )
=> NG=\(\frac{2}{3}\)BN (***)
Từ (*)(**)(***) => Đpcm
b) Xét tam giác DBA ta có :
AG = GD ( gt )
BF=FD ( gt )
=> GF là đường trung bình bình của tam giác DAB
=> GF = \(\frac{1}{2}\)AB( 5)
Ta có : DC = GB ( cm ở câu a )
Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)
=> EN = BG => EN= DC
Mà BG// DC ( cm ở câu a)
=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )
=> DE=NC
Mà NC =\(\frac{1}{2}\)AC (6)
=> AN= NC
Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)
Từ (5)(6)(7) => Đpcm
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm a, Tính HM,PA,GB. b, Chứng minh tam giác HPG cân
mk pit làm phần a thui
vì AG=2GM
+) AG=4 cm
=>4=2GM
=> MG=4:2=2 (cm)
+)gm+ag=am
+)mg=2 cm
+) ag=9cm
=>2+9=am
=> am=11 cm
tính độ dài đoạn cp và bn tương tự như trên