Cho tam giác ABC vuông tại A và AB < AC. Gọi AD là tia phân giác của tam giác ABC. Qua D kẻ đường vuông góc với BC cắt
AC tại điểm E. Chứng minh: BD=DE
* mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
c: Ta có: DA=DE
mà DE<DC
nên DA<DC
d: Xét ΔBEI vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBI}\) chung
DO đó: ΔBEI=ΔBAC
Suy ra: BI=BC
hay ΔBIC cân tại B
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Ta vẽ thêm: Từ điểm D kẻ 2 đường thẳng vuông góc với AB tại H và vuông góc với AC tại K.
Do AD là phân giác của ^BAC=> ^BAD=^DAC. Vì H thuộc AB và K thuộc AC=> ^HAD=^KAD
Xét tam giác ADH và tam giác ADK có:
^AHD=^AKD=90o
Cạnh AD chung => Tam giác ADH = Tam giác ADK ( Cạnh huyền góc nhọn)
^HAD=^KAD
=> DH=DK (2 cạnh tương ứng)
Ta có; Tam giác ABC vuông tại A=> ^ABC+^ACB=90o (2 góc nhọn trong tam giác vuông phụ nhau)
hay: ^HBD+^DCE=90o (Do H thuộc AB, D thuộc BC và E thuộc AC) (1)
Vì DE vuông góc với BC tại D=> Tam giác EDC là tam giác vuông tại D
=> ^DEC+^DCE=90o (phụ nhau) (2)
Từ (1) và (2) => ^HBD+^DCE=^DEC+^DCE=90o => ^HBD=^DEC=90o - ^DCE
Hay có thể nói: ^HBD=^DEK (K thuộc AC)
Xét tam giác BHD: ^BHD+^HBD+^HDB=180o (t/c cộng góc) (3)
Tương tự tam giác EKD: ^EKD+^KED+^EDK=180o (4)
Từ (3) và (4) => ^BHD+^HBD+^HDB=^EKD+^DEK+^EDK=180o (5)
Mà: ^BHD=^EKD=90o ; ^HBD=^DEK (Đã CM) (6)
Từ (5) và (6) => ^HDB=^EDK (Trừ 2 vế cho 2 cặp góc bằng nhau)
Xét tam giác BHD và tam giác EKD:
^BHD=^EKD=90o
DH=DK (CM trên) => Tam giác BHD = Tam giác EKD (g.c.g)
^HDB=^EDK (CM trên)
=> BD=DE (2 cạnh tương ứng) (đpcm)
**** cho mình nha !
AD là ta phân gác của tam giác abc là s hả bạn???