Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>BA=BM và DA=DM
=>BD là trung trực của AM
c: Xét ΔBKC có
KM,CA là đường cao
KM cắt CA tại D
=>D là trực tâm
=>BD vuông góc kC tại N
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=MD
mà DM<DC
nên AD<DC
c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có
DA=DM
góc ADK=góc MDC
=>ΔDAK=ΔDMC
=>DK=DC
=>ΔDKC cân tại D
ΔBKC cân tại B
mà BN là phângíac
nên BN vuông góc KC
a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔDAB=ΔDMB
b: D nằm giữa A và C
=>AD<AC
c: Xét ΔBKC có
CA,KM là đường cao
CA cắt KM tại D
=>D là trực tâm
=>BD vuông góc KC tại N
Xet ΔBKC có
BN vừa là phân giác, vùa là đường cao
=>ΔBKC cân tại B
a) Xét hai tam giác vuông: \(\Delta DAB;\Delta DMB\) có:
\(DB\) chung
\(\widehat{DBA}=\widehat{DMA}\) (\(BD\) là tia phân giác của \(\widehat{B}\))
\(\Rightarrow\Delta DAB=\Delta DMB\) (cạnh huyền - góc nhọn)
b) Do ∆DAB = ∆DMB (cmt)
⇒ DA = DM (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AM (1)
Do ∆DAB = ∆DMB (cmt)
⇒ BA = BM (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AM (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AM
Hay BD ⊥ AM
c) Xét hai tam giác vuông:
∆DMC và ∆DAK có:
DM = DA (cmt)
∠MDC = ∠ADK (đối đỉnh)
∆DMC = ∆DAK (cạnh góc vuông - góc nhọn kề)
⇒ MC = AK (hai cạnh tương ứng)
Lại có: BM = BA (cmt)
⇒ BM + MC = BA + AK
⇒ BC = BK
∆BCK cân tại B
Mà BD là tia phân giác của ∠B
⇒ BD cũng là đường cao của ∆BCK
⇒ BD ⊥ KC
Mà BD ⊥ AM (cmt)
⇒ AM // KC
Ta vẽ thêm: Từ điểm D kẻ 2 đường thẳng vuông góc với AB tại H và vuông góc với AC tại K.
Do AD là phân giác của ^BAC=> ^BAD=^DAC. Vì H thuộc AB và K thuộc AC=> ^HAD=^KAD
Xét tam giác ADH và tam giác ADK có:
^AHD=^AKD=90o
Cạnh AD chung => Tam giác ADH = Tam giác ADK ( Cạnh huyền góc nhọn)
^HAD=^KAD
=> DH=DK (2 cạnh tương ứng)
Ta có; Tam giác ABC vuông tại A=> ^ABC+^ACB=90o (2 góc nhọn trong tam giác vuông phụ nhau)
hay: ^HBD+^DCE=90o (Do H thuộc AB, D thuộc BC và E thuộc AC) (1)
Vì DE vuông góc với BC tại D=> Tam giác EDC là tam giác vuông tại D
=> ^DEC+^DCE=90o (phụ nhau) (2)
Từ (1) và (2) => ^HBD+^DCE=^DEC+^DCE=90o => ^HBD=^DEC=90o - ^DCE
Hay có thể nói: ^HBD=^DEK (K thuộc AC)
Xét tam giác BHD: ^BHD+^HBD+^HDB=180o (t/c cộng góc) (3)
Tương tự tam giác EKD: ^EKD+^KED+^EDK=180o (4)
Từ (3) và (4) => ^BHD+^HBD+^HDB=^EKD+^DEK+^EDK=180o (5)
Mà: ^BHD=^EKD=90o ; ^HBD=^DEK (Đã CM) (6)
Từ (5) và (6) => ^HDB=^EDK (Trừ 2 vế cho 2 cặp góc bằng nhau)
Xét tam giác BHD và tam giác EKD:
^BHD=^EKD=90o
DH=DK (CM trên) => Tam giác BHD = Tam giác EKD (g.c.g)
^HDB=^EDK (CM trên)
=> BD=DE (2 cạnh tương ứng) (đpcm)
**** cho mình nha !