cho x,y là 2 số dương và x^2010+y^2010=x^2011+y^2011=x^2012+y^2012n tính giá trị A = x^2020+y^2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(\left(x^{2011}+y^{2011}\right)\left(x+y\right)\)
\(=x^{2012}+y^{2012}+xy\left(x^{2010}+y^{2010}\right)\)
\(=\left(x^{2011}+y^{2011}\right)+xy\left(x^{2011}+y^{2011}\right)\)
\(=\left(xy+1\right)\left(x^{2011}+y^{2011}\right)\)
+ Vì x, y dương nên \(x^{2011}+y^{2011}>0\)
=> x + y = xy + 1
=> x + y - xy - 1 = 0
=> ( y - 1 ) - x( y - 1 ) = 0
=> ( 1 - x ) ( y - 1 ) = 0
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
+ x = 1 => \(1+y^{2010}=1+y^{2011}=1+y^{2012}\)
\(\Rightarrow y^{2010}=y^{2011}\) \(\Rightarrow y^{2010}-y^{2011}=0\)
\(\Rightarrow y^{2010}\left(1-y\right)=0\)
\(\Rightarrow y=1\left(doy>0\right)\)
+ Tương tự nếu y = 1 ta cùng tìm được x = 1
Do đó : A = 2
Lời giải khác:
Ta có:
\(x^{2011}+y^{2011}=x^{2010}+y^{2010}\)
\(\Rightarrow x^{2011}-x^{2010}+y^{2011}-y^{2010}=0\)
\(\Leftrightarrow x^{2010}(x-1)+y^{2010}(y-1)=0(1)\)
Và: \(x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Rightarrow x^{2012}-x^{2011}+y^{2012}-y^{2011}=0\)
\(\Leftrightarrow x^{2011}(x-1)+y^{2011}(y-1)=0(2)\)
Lấy (2)-(1) ta có:
\(x^{2011}(x-1)-x^{2010}(x-1)+y^{2011}(y-1)-y^{2010}(y-1)=0\)
\(\Leftrightarrow x^{2010}(x-1)^2+y^{2010}(y-1)^2=0\)
Dễ thấy \(x^{2010}(x-1)^2\geq 0; y^{2010}(y-1)^2\geq 0, \forall x,y>0\)
Do đó để tổng của chúng bằng $0$ thì \(x^{2010}(x-1)^2=y^{2010}(y-1)^2=0\)
Mà $x,y$ đều dương nên $x=y=1$
Khi đó ta dễ tính ra $A=2$
\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow\left(x^{2012}+x^{2010}-2x^{2011}\right)+\left(y^{2012}+y^{2010}-2y^{2011}\right)=9\)\(\rightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-y+1\right)=0\)
\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)
Do x;y dương => x=y=1
ta thấy: \(\left|x-2010\right|\ge0\); \(\left(y+2011\right)^{2020}\ge0\)
\(\Rightarrow\left|x-2010\right|+\left(y+2011\right)^{2020}+2011\ge2011\)
dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2010=0\\y+2011=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)
vậy MinA=2011 khi\(\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)
cho mk hỏi chút sao chỗ từ (1), (2) lại suy ra đc 1= x+y-xy vậy?
Bài ni t mần cho phát chán nó rồi:))
Ta có:\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\left(1\right)\)
Mặt khác:\(x^{100}+y^{100}=x^{101}+y^{101}=x^{102}+y^{102}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1=x+y-xy\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow x^{2010}+1=x^{2011}+1=x^{2012}+1\Rightarrow x=1\end{cases}}\)vì \(x;y\) là các số dương
Thay vào ta được:\(A=1^{2020}+1^{2020}=2\)