mn giúp em câu 12, 13 ạ, em cần gáp ạ( giải thích giúp em)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này áp dụng hệ thức lượng thôi bạn
AH=căn 6^2-4,8^2=3,6cm
=>AC=6^2/3,6=10cm
\(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\)
Thấy : \(sinx+cosx+2\ge-1-1+2=0\) . " = " ko xảy ra nên : \(sinx+cosx+2>0\)
Suy ra : \(\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\) (*)
(*) có no \(\Leftrightarrow\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\Leftrightarrow2y^2-6y+5\ge4y^2-4y+1\Leftrightarrow-2y^2-2y+4\ge0\)
\(\Leftrightarrow-y^2-y+2\ge0\) \(\Leftrightarrow-2\le y\le1\)
Suy ra : Max y = 1 . Chọn B
21 : \(cosx-\sqrt{3}sinx=0\)
cos x = 0 thay vào : sin x = 0 ( L )
cos x khác 0 \(\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\); ta có : \(1-\sqrt{3}tanx=0\Leftrightarrow tanx=\dfrac{1}{\sqrt{3}}\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\left(k\in Z\right)\)
49.
\(\Leftrightarrow m.sin2x+2\left(cos2x+1\right)=m+5\)
\(\Leftrightarrow m.sin2x+2cos2x=m+3\)
Pt có nghiệm khi:
\(m^2+2^2\ge\left(m+3\right)^2\)
\(\Leftrightarrow6m\le-5\Rightarrow m\le-\dfrac{5}{6}\)
\(\Rightarrow m=\left\{-3;-2;-1\right\}\)
50.
\(\Leftrightarrow m.2sin^2x+4sinx.cosx+3m.2cos^2x=2\)
\(\Leftrightarrow m\left(1-cos2x\right)+2sin2x+3m\left(1+cos2x\right)=2\)
\(\Leftrightarrow m.cos2x+sin2x=1-2m\)
Pt có nghiệm khi:
\(m^2+1\ge\left(1-2m\right)^2\Leftrightarrow3m^2-4m\le0\)
\(\Rightarrow m\in\left[0;\dfrac{4}{3}\right]\)
51.
ĐKXĐ: \(x\ne k\pi\)
\(\dfrac{5-4cosx}{sinx}=\dfrac{6tana}{1+tan^2a}\)
\(\Leftrightarrow\dfrac{5-4cosx}{sinx}=\dfrac{6sina}{cosa}.cos^2a=3sin2a\)
\(\Leftrightarrow5-4cosx=3sin2a.sinx\)
\(\Leftrightarrow3sin2a.sinx+4cosx=5\)
Pt có nghiệm khi:
\(\left(3sin2a\right)^2+4^2\ge5^2\)
\(\Leftrightarrow sin^22a\ge1\)
\(\Leftrightarrow sin^22a=1\Leftrightarrow cos2a=0\)
\(\Leftrightarrow2a=\dfrac{\pi}{2}+k\pi\Rightarrow a=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
\(\Rightarrow a=\left\{\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{5\pi}{4};\dfrac{7\pi}{4}\right\}\)
Em tự cộng và chọn kết quả nhé
13.
\(y=1+sin2x-\left(1-sin^22x\right)=sin^22x+sin2x\)
\(y=\left(sin2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\left\{{}\begin{matrix}sin^22x\le1\\sin2x\le1\end{matrix}\right.\) \(\Rightarrow y\le1+1=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=2\end{matrix}\right.\)
\(\Rightarrow4a+b=1\)
14.
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=x+\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{4}=\dfrac{\pi}{4}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
\(\Rightarrow x=\left\{\dfrac{\pi}{6};\dfrac{5\pi}{6}\right\}\)
\(\Rightarrow\dfrac{\pi}{6}+\dfrac{5\pi}{6}=\pi\)
15.
\(3cosx+2cos^2x-1-cos3x+1=cosx-cos3x\)
\(\Leftrightarrow cos^2x+cosx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm lớn nhất \(x=\dfrac{3\pi}{2}\)
\(sin\left(\dfrac{3\pi}{2}-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
16.
\(cos\left(2x+\dfrac{2\pi}{3}\right)+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow cos\left[\pi-2\left(\dfrac{\pi}{6}-x\right)\right]+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow-cos\left[2\left(\dfrac{\pi}{6}-x\right)\right]+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow1-2cos^2\left(\dfrac{\pi}{6}-x\right)+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow1-2t^2+4t=\dfrac{5}{2}\Leftrightarrow4t^2-8t+3=0\)
17.
\(sin2x=sinx\Rightarrow\left\{{}\begin{matrix}2x=x+k2\pi\\2x=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
Nghiệm dương nhỏ nhất: \(x=\dfrac{\pi}{3}\)
18.
\(-1\le sin3x\le1\Rightarrow-1\le y\le4\)
\(miny=-1\) ; \(maxy=4\)
18 ver 1
Câu này trắc nghiệm điển hình, chỉ thay \(x=40^0\) vào 4 đáp án để thử, ko ai tự luận nó cả
19.
ĐKXĐ:
\(cos\left(2x-\dfrac{\pi}{3}\right)\ne0\)
\(\Leftrightarrow2x-\dfrac{\pi}{3}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)
27.
\(cos\left(\dfrac{x}{2}+15^0\right)=sinx\)
\(\Leftrightarrow cos\left(\dfrac{x}{2}+15^0\right)=cos\left(90^0-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}+15^0=90^0-x+k360^0\\\dfrac{x}{2}+15^0=x-90^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=50^0+k240^0\\x=210^0+k720^0\end{matrix}\right.\)
Với \(k=1\Rightarrow x=50^0+240^0=290^0\)
28.
\(sin\left(x-\dfrac{\pi}{4}\right)\ne0\)
\(\Leftrightarrow x-\dfrac{\pi}{4}\ne k\pi\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\)
29.
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\dfrac{17\pi}{12};\dfrac{23\pi}{12}\right\}\)
30.
Pt \(2sinx+3cosx=1\) có \(2^2+3^2>1^2\) nên có nghiệm