K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

\(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) 

Thấy : \(sinx+cosx+2\ge-1-1+2=0\)  . " = " ko xảy ra nên : \(sinx+cosx+2>0\) 

Suy ra : \(\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\)  (*)

(*) có no \(\Leftrightarrow\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\Leftrightarrow2y^2-6y+5\ge4y^2-4y+1\Leftrightarrow-2y^2-2y+4\ge0\)

\(\Leftrightarrow-y^2-y+2\ge0\)  \(\Leftrightarrow-2\le y\le1\)

Suy ra : Max y = 1 . Chọn B 

16 tháng 7 2021

21 : \(cosx-\sqrt{3}sinx=0\) 

cos x = 0 thay vào : sin x = 0 ( L ) 

cos x khác 0 \(\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\); ta có : \(1-\sqrt{3}tanx=0\Leftrightarrow tanx=\dfrac{1}{\sqrt{3}}\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\left(k\in Z\right)\)