Cho S=1/2+(1/2)2+(1/2)3+...+(1/2)2017 .Chứng minh rằng S<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\)
\(2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\)
\(2S-S=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\right]\)
\(S=1-\left(\frac{1}{2}\right)^{2017}< 1\)
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)
Ta có :
S= 1/51 +1/52 +..+1/100
Vì 1/51>1/52>...>1/100
=> S >1/100 * 50 =1/2 (1)
Vì 1/100 <1/99<...<1/51<1/50
=> S < 1/50 * 50=1 (2)
Từ (1),(2) => 1/2 < S<1
P=1/2^2+1/2^3+...+1/2^2018
2P=1/2 +1/2^2 +...+1/2^2017
=> 2P-P= (1/2 +1/2^2 +...+1/2^2017)-(1/2^2+1/2^3+...+1/2^2018 )
=> P=1/2 -1/2^2018 <1/2 <3/4
Ta có: \(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}.50=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Ta có \(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};...;\frac{1}{100}< \frac{1}{50}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}.50=1\)
\(\Rightarrow S< 1\)
Ta có S=1/2^2+1/3^2+1/4^2+...+1/9^2
<1/2²+1/2*3+1/3*4+....+1/8*9
=1/2²+1/2-1/3+1/3-1/4+....+1/8-1/9
=1/4+1/2-1/9=23/36<32/36=8/9 (♪)
Ta lại có S=1/2^2+1/3^2+1/4^2+...+1/9^2
>1/2²+1/3*4+1/4*5+....+1/9*10
=1/2²+1/3-1/4+1/4-1/5+........+1/9-1/10
=1/2²+1/3-1/10
=19/20>8/20=2/5 ( ♫)
Từ (♪)( ♫) cho ta đpcm
\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{2017}\)
\(\Rightarrow2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{2016}\)
\(\Rightarrow2S-S=1-\left(\frac{1}{2}\right)^{2017}\)
\(\Rightarrow S=1-\left(\frac{1}{2}\right)^{2017}< 1\left(đpcm\right)\)