K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{2017}\)

\(\Rightarrow2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{2016}\)

\(\Rightarrow2S-S=1-\left(\frac{1}{2}\right)^{2017}\)

\(\Rightarrow S=1-\left(\frac{1}{2}\right)^{2017}< 1\left(đpcm\right)\)

13 tháng 7 2018

Đặt  \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}\right)\)

\(A=1-\frac{1}{2^{2018}}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

hok tốt .

13 tháng 7 2018

xin lỗi nha , mk ko thấy S bạn thay A => S là đc

bạn thông cảm , 

16 tháng 9 2018

\(2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{2017}\)

  \(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2018}\)

\(\Rightarrow S=2S-S=1-\left(\frac{1}{2}\right)^{2018}\)

\(\Rightarrow S< 1\)( đpcm )

16 tháng 9 2018

\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2018}\)

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)

\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\right)\)

\(S=1-\frac{1}{2^{2018}}< 1\) ( đpcm ) 

Chúc bạn học tốt ~ 

1 tháng 5 2015

\(S=\left(\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+..+\frac{1}{2^{2002}}\right)-\left(\frac{1}{2^4}+\frac{1}{2^8}+..+\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}\right)\)= A - B

Tính A:

\(2^4.A=2^2+\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{1998}}\)

=> 24.A - A = 15.A =

 \(\left(2^2+\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{1998}}\right)\)\(\left(\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{2002}}\right)\)

= 22 - \(\frac{1}{2^{2002}}\) => A = \(\frac{2^2}{15}-\frac{1}{15.2^{2002}}<\frac{4}{15}\)

Tính B :

\(2^4.B=1+\frac{1}{2^4}+\frac{1}{2^8}+...+\frac{1}{2^{4n}}+...+\frac{1}{2^{2000}}\)

=> 24.B - B

=\(\left(1+\frac{1}{2^4}+\frac{1}{2^8}+...+\frac{1}{2^{4n}}+...+\frac{1}{2^{2000}}\right)\)\(\left(\frac{1}{2^4}+\frac{1}{2^8}+...+\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}\right)\)

\(1-\frac{1}{2^{2004}}\Rightarrow B=\frac{1}{15}-\frac{1}{15.2^{2004}}<\frac{1}{15}\)

Vậy S < \(\frac{4}{15}-\frac{1}{15}=\frac{3}{15}=\frac{1}{5}=0,2\) ĐPCM

15 tháng 1 2017

gia thich roi cm

22 tháng 9 2018

Có S=\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

=>\(\dfrac{1}{2^2}S=\dfrac{1}{2^2}\)\(\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)

=> \(\dfrac{1}{2^2}\)S= \(\dfrac{1}{2^4}-\dfrac{1}{2^6}+\dfrac{1}{2^8}-...+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+...+\dfrac{1}{2^{2004}}-\dfrac{1}{2^{2006}}\)

+S =\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

=> \(\dfrac{5}{4}\)S= \(\dfrac{1}{2^2}\)-\(\dfrac{1}{2^{2006}}\)

=> S= \(\dfrac{\left(\dfrac{1}{2^2}-\dfrac{1}{2^{2006}}\right)}{\dfrac{5}{2^2}}=\dfrac{\dfrac{1}{2^2}}{\dfrac{5}{2^2}}-\dfrac{\dfrac{1}{2^{2006}}}{\dfrac{5}{2^2}}=\dfrac{1}{5}-\dfrac{1}{2^{2004}.5}=0.2-\dfrac{1}{2^{2004}.5}\)

=> S <0,2

Vậy S <0,2(đpc/m)

25 tháng 9 2018

Nếu 1/2^2*S=1/2^2 thì tính đc S luôn r cần gì làm nữa bạn

Cũng cảm ơn vì đã giúp nhé

8 tháng 5 2015

mình chỉ làm được bài 1 thôi .

1/ ta có : abc + bca + cab = 111a + 111b + 111c 

                                         = 111 . (a+b+c)

                                         = 3. 37 . (a+b+c) 

Để S là số chính phương thì a+b+c = 3. 37 . k^2. 

Mà a+ b+ c < hoặc = 27 nên : 

=> Tổng S ko là số chính phương . 

18 tháng 1 2017

Chắc đg oy đó bợn à 

K cho mk nhé