K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

\(x^3+7y=y^3+7x\)

\(\Leftrightarrow x^3-y^3=7x-7y\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)=7\left(x-y\right)\)

+ Nếu x - y = 0 thì x = y (thỏa mãn)

+ Nếu x - y \(\ne\) 0 thì \(x^2+xy+y^2=7\) (*)

Vì x2 là các số chính phương khác 0 bé hơn 7 nên \(x^2\in\left\{1;4\right\}\)

Với x2 = 1 thì x = 1. Thay x2 vào (*) ta được 1 + y2 + y = 7 \(\Leftrightarrow\) y2 + y = 6, loại

Với x2 = 4 thì x = 2. Thay x2 vào (*) ta được 4 + y2 + 2y = 7 \(\Leftrightarrow\) y2 + 2y = 3 \(\Leftrightarrow\) y = 1

Vậy x,y là các số nguyên dương bằng nhau hoặc x = 2, y = 1

16 tháng 2 2022

bạn ơi tại sao y^2 + y =6 lại loại

3 tháng 12 2017

Ta có :

1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7

đặt x  = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :

7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy ...

3 tháng 12 2017

y = 7 đó

26 tháng 3 2017

Ta có : x= (121-7y)/5
Để x nguyên dương thì 121-7y chia hết cho 5 và  0 < y <18 (y nguyên dương)
để 121-7y chia hết cho 5 thì y=3 hoặc y=13
khi y=13 => x=6
ki y=3 => x= 20

12 tháng 6 2016

a) Gọi tích của năm số nguyên liên tiếp là ; \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)

Tích của 5 số nguyên liên tiếp thì chia hết cho 3 và 5 

Tích 4 số nguyên liên tiếp chia hết cho 4 và 2

Do đó : Tích của 5 số nguyên liên tiếp chia hết cho : 2.3.4.5 = 120

b) \(x^3+7y=y^3+7x\left(1\right)\Leftrightarrow x^3-y^3-7x+7y=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-7\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-7=0\end{cases}}\)

Mà \(x\ne y\)nên ta xét trường hợp : \(x^2+xy+y^2-7=0\)

\(\Leftrightarrow\left(x^2+y^2\right)+\left(x+y\right)^2=14\)

\(\Rightarrow\left(x+y\right)^2\le14\Rightarrow x+y\le3\)

Do đó, ta sẽ chọn các giá trị x,y trong khoảng \(\left(1;2\right)\)vì x,y>0

  • Nếu \(x=1\Rightarrow y=1\)(loại) hoặc \(y=2\)(nhận)
  • Nếu \(x=2\Rightarrow y=1\)(nhận)

Vậy các số nguyên dương phân biệt thoả mãn phương trình là : 

\(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

 

20 tháng 1 2018

Đây mà là Tiếng Anh ak ?

20 tháng 1 2018

Đây là toán chứ bạn