cho B=172008-112008-32008 tìm chữ số tận cùng của B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
3x6x9x12x...x141 = (1 x 3) x (2 x 3) x (3 x 3) x ( 4 x 3) x ....x ( 47 x 3) = (1x 2 x 3 x 4 x 5 x ....x 47)x ( 3 x 3x 3 x 3x....x3) -Từ ở nhóm 1 có : 5 , 15, 35, 45. Mỗi số này khi ghép với một số chẵn sẽ tạo ra 1 chữ số 0 ở tận cùng -các số 10, 20, 30, 40 mỗi thừa số này cũng tạo ra 1 chữ số 0 ở tận cùng -Số 25 = 5 x 5 sẽ tạo ra 2 chữ số 0 ở tận cùng => có 10 chữ số ở tận cùng giống nhau và là 10 chữ số 0 b, muốn tìm 2 chữ số tận cùng của tích đó thì thực chất ta đi tìm 2 chữ số tận cùng của tích 4 x 4 x 4 x....x 4 ( gồm 202 chữ số 4 ) Ta thấy số có 2 chữ số tận cùng là 76 nhân với nhau thì vẫn được 2 chữ số tận cùng là 76 ( ở dạng bài tìm 2 chữ số tận cùng thì ta cần nhớ 1 số quy luật đặc biệt như vậy ) Lại thấy 24 x 24 = 576; 4x4x4x4x4 = 1024 nên cứ ghép 10 chữ số 4 với nhau ta sẽ được 1 kết quả có 2 chữ số tận cùng là 76 Có 202 chữ số nên ghép được 20 nhóm dư 2 chữ số. Vậy 2 chữ số tận cùng cần tìm là 2 chữ số tận cùng của tích: 76 x 4 x 4 = 1216 Đáp số: 16
a, vì \(1978\equiv8\)( mod 10 ) \(\Rightarrow1978^4\equiv6\) ( mod 10 )
mặt khác : \(1978^{4k}\equiv6\) ( mod 10 )
Vậy chữ số tận cùng của C là 6
b. vì \(C\equiv6\) ( mod 10 ) nên \(C^{20}\equiv76\)( mod 100 ) \(\Rightarrow C^{20m}\equiv76\)( mod 100 )
mặt khác : \(1986\equiv6\)( mod 20 ) \(\Rightarrow1986^8\equiv16\)( mod 20 )
do đó : \(1986^8=20k+16\); với k thuộc N
\(\Rightarrow C=1978^{20k+16}=1978^{16}.\left(1978^{20}\right)^k\equiv1978^{16}.76\) ( mod 100 )
lại có : \(1978\equiv-22\)( mod 100 ) \(\Rightarrow1978^4\equiv56\)( mod 100 )
\(\Rightarrow\left(1978^4\right)^4\equiv56^4\) ( mod 100 ) hay \(1978^{16}\equiv96\)( mod 100 )
từ đó ta có : \(C\equiv96.76\)( mod 100 ) \(\Rightarrow C\equiv76\)( mod 100 )
vậy C có hai chữ số tận cùng là 76
Cho A= 1944^2005
a) tìm dư khi chia A cho 7
b) tìm chữ số tận cùng của A
c) tìm 2 chữ số tận cùng của A
B=(174)502 -112008 - (34)502 = (....1)502 -....1 - (...1)502 =....1 -.....1 - ....1 = ....0- .....1 =.....9