c) Biết Chứng minh rằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
A B C D E H F
Tam giác ABC có : góc ABC > góc ACB (gt)
=> AC > AB (đl)
AD _|_ BC (gt)
D thuộc BC
=> BD < DC
H thuộc AD
=> HB < HC
b, AD; BE là đường cao
ADcắt BE tại H
=> CH là đường cao (đl)
=> CH _|_ AB (đn)
HF _|_ AB (gt)
=> C; H; F thẳng hàng
c.
\(AB>AD;AC>AD\left(ch>cgv\right)\)
\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)
d
Kẻ \(HN//AC;HM//AB\)
Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)
Áp dụng bất đẳng thức tam giác ta có:
\(HA< AM+HM=AM+AN\left(1\right)\)
Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)
Xét \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)
Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)
Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)
Tương tự,ta có:
\(HA+HB+HC< AB+BC\)
\(HA+HB+HC< BC+AC\)
\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)
\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)
Ta có: \(\overline{abc}=100a+10b+c\)
\(=98a+2a+7b+3b+c\)
\(=7\left(14a+b\right)+\left(2a+3b+c\right)\)
mà \(\overline{abc}⋮7\)
và \(7\left(14a+b\right)⋮7\)
nên \(2a+3b+c⋮7\)
Ta có : ABC=100a+10b+c
= 98a+2a+7b+3c+c
=7.(14a+b)+(3a+2b+c)
Mà abc chia hết cho 7
=>3a+2b+c chia hết cho 7 (điều phải chứng minh)
Theo tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
Do đó
\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !