K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2014

Theo tính chất của dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Do đó

\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

21 tháng 11 2016

Ta có : \(\frac{a}{d}=\frac{b}{c}=\frac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

Có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\) ( . )

Từ ( . ) \(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

Vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

=> ĐPCM.

5 tháng 12 2016

chắc chắn đúng ko vậy

 

30 tháng 1 2017

Đặt\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow k^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(1)

Lại có: \(k=\) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\) \(\Rightarrow k^3=\left(\frac{a+b+c}{b+c+d}\right)^3\left(2\right)\)

Từ (1),(2)\(\Rightarrow\)\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

5 tháng 12 2016

I'm cũng gặp bài này

 

22 tháng 9 2019

Ta có a/c=c/b=b/d

⟹a3 /c3=c3/b3=b3/d3=a3+c3-d3/c3+b3-d3

mà a3/c3=a/c.c/b.b/d=a/d

⟹a3+c3-d3/c3+b3-d3=a/d

14 tháng 12 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=t\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\left(\dfrac{a+b}{c+d}\right)^3=t^3\)

\(\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3-b^3}{c^3-d^3}=t^3\)

Ta có đpcm