cho p > 3 là snt chứng minh rằng p mũ 2 trừ 1 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ơ, đề phải là lớn hơn hẳn 3 chứ nhỉ ? sao lại bằng đc ? nếu bằng thì đề sai ; sửa là lơn hơn hẳn 3 nhé
Có p2 - 1 = (p - 1)(p + 1)
Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)
*Nếu p = 3k + 1
=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)
= 3k( 3k + 2 ) chia hết cho 3
*Nếu p = 3k + 2
=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)
=( 3k + 1) .(3k + 3)
= 3 ( k + 1 )( 3k + 1 ) chia hết cho 3
Vậy .........
Vương Cô Lô Nhuê
Có p2 - 1 = (p - 1)(p + 1)
Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)
*Nếu p = 3k + 1
=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)
= 3k( 3k + 2 ) chia hết cho 3
*Nếu p = 3k + 2
=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)
=( 3k + 1) .(3k + 3)
= 3 ( k + 1 )( 3k + 1 ) chia hết cho 3
Vậy .........
Có p2 - 1 = (p - 1)(p + 1)
Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)
*Nếu p = 3k + 1
=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)
= 3k( 3k + 2 ) chia hết cho 3
*Nếu p = 3k + 2
=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)
=( 3k + 1) .(3k + 3)
= 3 ( k + 1 )( 3k + 1 ) chia hết cho 3
Vậy .........
Trả lời:
167 - 224
= ( 24 )7 - 224
= 228 - 224
= 224 ( 24 - 1 )
= 224 . 15 \(⋮\) 15 ( vì 15\(⋮\)15 )
Vậy 167 - 224 chia hết cho 15
CMR: \(16^7\) \(-\) \(2^{24}\) \(⋮\) \(15\)
= \(\left(2^4\right)^7\) \(-\) \(2^{24}\)
= \(2^{4.7}\) \(-\) \(2^{24}\)
= \(2^{28}\) \(-\) \(2^{24}\)
= \(2^{24}\) \(.\) ( \(2^8\) \(+\) \(1\))
= \(2^{24}\) \(.\) \(257\)
=> \(⋮̸\) \(15\)
- Hok T -
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
Chứng minh:1050-1 chia hết cho 3
Ta có:
1050=10.10....10 (có 50 số 10)=1000...000(50 số 0)
1000000....0000 - 1= 9999..99(có 49 số 9)
9999....999 có tổng các chữ số bằng 441 mà 441 chia hết cho 3
Vậy 1050-1 chia hết cho 3
Ta có :1050 = 10000..000 (50 c/s 0 )
Nếu lấy số đó -1 ta sẽ được số :999999999999999999999999 (50 c/s 9)
=> nó chắc chắn chia hết cho 3.
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
Ta có: p>3=>p là số lẻ
Ta có: TH: p=2k+1
p2-1=4k2+4k
=4(k2+k)
=>p2-1 chia hết cho 8
TH: p=3k+1
=>p2-1=9k2+6k
=> chia hết cho 3
TH: p=3k+2
=>p2-1=9k2+12k+3
chia hết cho 3
=> p2-1 CHIA HẾT CHO 3;8
=> p2-1 CHIA HẾT CHO 24 với điều kiện p>3