K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

1/xy + 1/yz +1/zx=1

=>1/xy+1/yz=1-1/zx

=>z/xyz+x/xyz=xz-1/zx=>x+z/xyz=(xz-1)*y/xyz=>x+z=(xz-1)*y=>x+z=xyz-1=x+y+z-1=>y=1

Lần lượt bạn làm như vậy từ đề bài ta suy ra tiếp theo làm 1/xy+1/zx=1-1/yz r làm tương tự như trên sẽ ra đáp án cách mình không hay lắm nhA! Mk sẽ cố gắng làm cách hay hơn nx nhưng cần thời gian mong bạn thông cảm 

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

12 tháng 11 2018

\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

14 tháng 8 2020

\(P=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\)

\(=x+y+z+\frac{9}{x+y+z}-\frac{6}{x+y+z}\)

\(\ge6-\frac{6}{3\sqrt[3]{xyz}}=6-\frac{6}{3}=4\)

Dấu = xảy ra khi x = y = z = 1

5 tháng 12 2014

ta có:\(\frac{x}{xy+x+1}\)+\(\frac{y}{yz+y+1}\)+\(\frac{z}{xz+z+1}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xy+x+1}\)+\(\frac{1}{xy+x+1}\)(vì xyz=1)

         =\(\frac{x+xy+1}{xy+x+1}\)

         =1

1 tháng 10 2017

Ta có :\(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)

       \(=\frac{x}{xy+x+1}+\frac{xy}{xyz+xy+x}+\frac{xyz}{x^2yz+xyz+xy}\)

       \(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+x+1}\)vì    xyz=1

        \(=\frac{x+xy+1}{xy+x+1}\)

        \(=1\)