K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M,...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
4 tháng 11 2018

A B C D M P N Q E F I J H K S

Gọi H và K lần lượt là đỉnh thứ tư của các hình bình hành ABHE và DEKC. Qua P kẻ đường thẳng song song với BH cho cắt HE tại I, dựng đường thẳng qua Q sọng song với CK cho cắt KE tại J. Lấy giao điểm S giữa IJ và EF.

Xét hình bình hành ABHE: BH // AE hay BH // AD; BH=AE=AD/2 (T/c hình bình hành) (1)

Tương tự: CK // AD và CK=AD/2  (2)

Từ (1) và (2) => CH = CK và BH // CK

Xét \(\Delta\)BHF và \(\Delta\)CKF có: BH = CK; BF = CF; ^HBF = ^KCF => \(\Delta\)BHF = \(\Delta\)CKF (c.g.c)

=> ^BFH = ^CFK (2 góc tương ứng); FH = FK (2 cạnh tương ứng) => F là trung điểm HK

Dễ thấy: \(\frac{EI}{EH}=\frac{AP}{AB}=\frac{2}{3}\)\(\frac{EJ}{EK}=\frac{DQ}{DC}=\frac{2}{3}\) => \(\frac{EI}{EH}=\frac{EJ}{EK}\)=> IJ // HK (ĐL Thales đảo)

Theo hệ quả ĐL Thales: \(\frac{IS}{HF}=\frac{JS}{KF}\left(=\frac{ES}{EF}\right)\). Mà HF = KF nên IS = JS

=> S là trung điểm của IJ   (3)

Mặt khác: PI = AE = AD/2; QJ = DE = AD/2 và PI // QJ (Cùng //AD) => Tứ giác PIQJ là hình bình hành

=> Trung điểm IJ cũng là trung điểm PQ (4)

Từ (3) và (4) => S là trung điểm của PQ. Ta thấy: EF cũng đi qua S (cách dựng)

Vậy thì EF đi qua trung điểm PQ. C/m tương tự, ta cũng có: EF đi qua trung điểm MN (đpcm).

cảm ơn bạn!

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BCBài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp...
Đọc tiếp

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BC

Bài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.

Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp bờ AB vẽ các tam giác đều AMC<BMD. Gọi E,F,I,K lần lượt là trung điểm của CM,CB,DM,DA. Cmr:

a. EF//KI. b.EI=KF; c.KF=CD/2

Bài 4:Cho tam giác ABCD. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD=CE. Gọi M,N,P,Q lần lượt là trung điểm của BC,DE,BE,CD. Cmr:

a. tan giác PMQ cân; b.MN vuông góc với PQ; c. Gọi Ax là tia phân giác góc BAC, Cm: Ax//MN

 

Cảm ơn các bạn giúp mình nhiều, Cảm ơn ạ!!

0
10 tháng 3 2018

Ta có giao tuyến của 2 mp (ABD) và (BCD)  là BD.

Lại có I ∈ M P ⊂ A B D I ∈ N Q ⊂ B C D ⇒ I thuộc giao tuyến của (ABD)  và (BCD).

=> I thuộc BD => 3 điểm I; B; D  thẳng hàng.

 Chọn B.

10 tháng 3 2021

Cảm ơn bạn