Ko có cái quần què gì để gửi nên viết ra đây các OLMERS đừng trả lời nhé plzko trả lời ra dưới câu hỏi mình nhé các OLMERS. Ai trả lời dưới câu hỏi là coi như không biết đọc chữ đáy nhé :))Bài 1: Cho tứ giác ABCD có BC=AD và BC không song song với AD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của các đoạn thẳng AB,BC,CA,DA,AC,BD.a) Chứng minh tứ giác MEPF là hình thoib) Chứng minh các đoạn...
Đọc tiếp
Ko có cái quần què gì để gửi nên viết ra đây các OLMERS đừng trả lời nhé plz
ko trả lời ra dưới câu hỏi mình nhé các OLMERS. Ai trả lời dưới câu hỏi là coi như không biết đọc chữ đáy nhé :))
Bài 1: Cho tứ giác ABCD có BC=AD và BC không song song với AD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của các đoạn thẳng AB,BC,CA,DA,AC,BD.
a) Chứng minh tứ giác MEPF là hình thoi
b) Chứng minh các đoạn thẳng MP,NQ,EF cùng cắt nhau tại một điểm
c) Tìm thêm điều kiện của tứ giác ABCD để N,E,F,Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A ( AB<AC ),M là trung điểm của BC,từ M kẻ đường thẳng song song với AC,AB lần lượt cắt AB tại E, cắt AC tại F.
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm của AM.Chứng minh E và F đối xứng qua O
d) Gọi D là trung điểm của MC. Chứng minh OMDF là hình thoi.
Bài 3:Cho hình bình hành ABCD , trên AC lấy 2 điểm M và N sao cho AM=CN
a) Tứ giác BNDM là hình gì?
b) hình bình hành ABCD phải thêm điều kiện gì? Thì BNDM là hình thoi
c) BM cắt AD tại K . Xác định vị trí của M để K là trung điểm của AD.
d) Hình bình hành ABCD thỏa mãn cả 2 điều kiện ở b,c thì phải thêm điều kiện gì để BNDM là hình vuông
Gọi H và K lần lượt là đỉnh thứ tư của các hình bình hành ABHE và DEKC. Qua P kẻ đường thẳng song song với BH cho cắt HE tại I, dựng đường thẳng qua Q sọng song với CK cho cắt KE tại J. Lấy giao điểm S giữa IJ và EF.
Xét hình bình hành ABHE: BH // AE hay BH // AD; BH=AE=AD/2 (T/c hình bình hành) (1)
Tương tự: CK // AD và CK=AD/2 (2)
Từ (1) và (2) => CH = CK và BH // CK
Xét \(\Delta\)BHF và \(\Delta\)CKF có: BH = CK; BF = CF; ^HBF = ^KCF => \(\Delta\)BHF = \(\Delta\)CKF (c.g.c)
=> ^BFH = ^CFK (2 góc tương ứng); FH = FK (2 cạnh tương ứng) => F là trung điểm HK
Dễ thấy: \(\frac{EI}{EH}=\frac{AP}{AB}=\frac{2}{3}\); \(\frac{EJ}{EK}=\frac{DQ}{DC}=\frac{2}{3}\) => \(\frac{EI}{EH}=\frac{EJ}{EK}\)=> IJ // HK (ĐL Thales đảo)
Theo hệ quả ĐL Thales: \(\frac{IS}{HF}=\frac{JS}{KF}\left(=\frac{ES}{EF}\right)\). Mà HF = KF nên IS = JS
=> S là trung điểm của IJ (3)
Mặt khác: PI = AE = AD/2; QJ = DE = AD/2 và PI // QJ (Cùng //AD) => Tứ giác PIQJ là hình bình hành
=> Trung điểm IJ cũng là trung điểm PQ (4)
Từ (3) và (4) => S là trung điểm của PQ. Ta thấy: EF cũng đi qua S (cách dựng)
Vậy thì EF đi qua trung điểm PQ. C/m tương tự, ta cũng có: EF đi qua trung điểm MN (đpcm).
cảm ơn bạn!