Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hình thang ABCD(AB//CD) có
M là trung điểm của AD(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
Suy ra: MN//AB//DC và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
hay \(MN=\dfrac{3+5}{2}=\dfrac{8}{2}=4\left(cm\right)\)
b) Ta có: AD//BE(gt)
AD\(\perp\)DC(gt)
Do đó: BE\(\perp\)DC(Định lí 2 từ vuông góc tới song song)
Xét tứ giác ABED có
\(\widehat{BAD}=90^0\)(gt)
\(\widehat{ADE}=90^0\)(gt)
\(\widehat{BED}=90^0\)(cmt)
Do đó: ABED là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
xét tam giác ABD có
[laTEX]\frac{AB}{sin 90} = \frac{AD}{sin 36} \Rightarrow AD = sin 36. AB[/laTEX]
xét tam giác ABE có
[laTEX]\frac{AB}{sin 54} = \frac{BE}{sin 108} \Rightarrow BE = \frac{sin 108}{sin 54}. AB[/laTEX]
ta có
[laTEX]sin 108 = sin (2.54) = 2sin 54. cos 54 \\ \\ BE = \frac{2sin 54. cos 54 }{sin 54}.AB = 2cos54.AB[/laTEX]
mặt khác
[laTEX]cos 54 = sin 36 \Rightarrow 2AD = BE[/laTEX]
Cảm ơn bạn