Tìm x :
2/2.4 + 2/4.6 + ....... + 2/x.(x+2) = 4/9 ( . là dấu x )
Mọi người ơi giúp mình nhé ! Cảm ơn mn nhiều !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(\Leftrightarrow2x^2+16x+32-x^2+4=0\)
\(\Leftrightarrow x^2+16x+36=0\)
\(\Leftrightarrow x^2+16x+64=28\)
\(\Leftrightarrow\left(x+8\right)^2=28\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=\sqrt{28}-8\\x_2=-\sqrt{28}-8\end{cases}}\)
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(2x^2+16x+32-x^2+4=0\)
\(x^2+16x+36=0\)
\(x^2+16x+64=28\)
\(\left(x+8\right)^2=28\)
bình phương thì chia lm 2 trường hợp
lm tiếp phần sau
`(15-x)+(x-12)=7-(-5+x)`
`=>15-x+x-12=7+5-x`
`=>3=12-x`
`=>x=12-3`
`=>x=9`
Vậy `x=9`
Ta có: \(x^4-30x^2+31x-30=0\) \(\Rightarrow x^4+x-30x^2+30x-30=0\)
\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow x^2+x-30=0\Rightarrow x^2-5x+6x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)
Vậy x=5 hoặc x = -6
\(f\left(1\right)=\left(1^2-1-1\right)^{100}+\left(1^2+1-1\right)^{100}-2=\left(-1\right)^{100}+1^{100}-2=1+1-2=0\)
\(\Rightarrow f\left(x\right)⋮\left(x-1\right)\)(1)
\(f\left(-1\right)=\left[\left(-1\right)^2-\left(-1\right)-1\right]^{100}+\left[\left(-1\right)^2+\left(-1\right)-1\right]^{100}-2\)
\(=1^{100}+\left(-1\right)^{100}-2=1+1-2=0\)
\(\Rightarrow f\left(x\right)⋮\left(x+1\right)\)(2)
Mà x - 1 và x + 1 không có nhân tử chung khác 1 (3)
Từ (1), (2) và (3) \(\Rightarrow f\left(x\right)⋮\left[\left(x-1\right)\left(x+1\right)\right]\Rightarrow f\left(x\right)⋮\left(x^2-1\right)\)
\(C=\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Rightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Rightarrow\left(x-2010\right)\times\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
Nên x - 2010 = 0
=> x = 2010
Vậy x = 2010
\(\frac{x-1}{2009}+\frac{x-1}{2008}-2=\frac{x-3}{2007}+\frac{x-4}{2006}-2\)
\(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(x-2010\cdot\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
mà vế phải ( vế có phân số ) khác 0
=> x - 2010 = 0
=> x = 2010
Vậy,.........
( 2 + x ) + ( 4 + x ) + ( 6 + x ) + ... + ( 52 + x ) = 780
( x + x + x + ... + x ) + ( 2 + 4 + 6 + ... + 52 ) = 780
26x = 780 - 702
26x = 78
x = 78 : 26
x = 3
\(\frac{2}{2.3}\) + \(\frac{2}{3.4}\) + \(\frac{2}{4.5}\) + .......+ \(\frac{2}{x.\left(x+1\right)}\) = \(\frac{2017}{2019}\)
2 . ( \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + .......+ \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)
2 . ( \(\frac{1}{2}\) - \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)
\(\frac{1}{2}\) - \(\frac{1}{x+1}\) = \(\frac{2017}{2019}\) : 2
\(\frac{1}{2}\) - \(\frac{1}{x+1}\) = \(\frac{2017}{4038}\)
\(\frac{1}{x+1}\) = \(\frac{1}{2}\) - \(\frac{2017}{4038}\)
\(\frac{1}{x+1}\) = \(\frac{1}{2019}\)
<=> x + 1 = 2019 => x = 2018
vậy x = 2018
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2019}\)
\(\Rightarrow x+1=2019\)
\(\Leftrightarrow x=2018\)
Vậy \(x=2018\)
A = x + | x |
có ; \(\left|x\right|\ge0\forall x\)
=> \(x+\left|x\right|\ge x\forall x\)
dấu ''='' xảy ra <=> x =0
vậy gtnn của A là x tại x=0
b) ta có : \(\left|x-3\right|\ge0\forall x\in Z\)
dấu ''='' xảy ra <=> x-3=0
=> x=3
vậy gtnn của bt B là 0 tại x=3
c) | x - 2 | + | x - 4 |
\(C=\left|x-2\right|+\left|x-4\right|\ge\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|\ge2\)
dấu ''='' xảy ra <=> \(\left(x-2\right)\left(4-x\right)\ge0\)
\(\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
vậy gtnn của bt C là 2 tại x ={2;4}
\(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{x\left(x+2\right)}=\frac{4}{9}\)
<=> \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{4}{9}\)
<=> \(\frac{1}{2}-\frac{1}{x+2}=\frac{4}{9}\)
<=> \(\frac{1}{x+2}=\frac{1}{18}\)
=> \(x+2=18\)
<=> \(x=16\)
Vậy...