K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

Ta thấy: \(27309\equiv 2\pmod 7\)

\(\Rightarrow A\equiv 2^{10}+2^{20}+2^{30}+...+2^{100}\pmod 7\)

Lại có:

\(2^3\equiv 1\pmod 7\)

\(\Rightarrow 2^{10}=(2^3)^3.2\equiv 1^3.2\equiv 2\pmod 7\)

\(\Rightarrow \left\{\begin{matrix} 2^{20}\equiv 2^2\pmod 7\\ 2^{30}\equiv 2^3\pmod 7\\ ......\\ 2^{100}\equiv 2^{10}\pmod 7\end{matrix}\right.\)

Do đó: \(A\equiv 2+2^2+..+2^{10}\pmod 7\)

\(A\equiv 2(1+2+2^2)+2^4(1+2+2^2)+2^7(1+2+2^2)+2^{10}\pmod 7\)

\(A\equiv 2.7+2^4.7+2^7.7+2^{10}\pmod 7\)

\(A\equiv 2^{10}\equiv 2\pmod 7\)

Vậy $A$ chia $7$ dư $2$

27 tháng 3 2017

Ta có: \(2730\equiv0\left(mod7\right)\Rightarrow1730^{10}\equiv0\left(mod7\right)\left(1\right)\)

\(927309\equiv5\left(mod7\right)\)

\(\Rightarrow927309^{10^2}\equiv5^{10^2}\left(mod7\right)\)

\(5^6\equiv1\left(mod7\right)\)

\(\Rightarrow5^{100}=5^{96}.5^4\equiv5^4\equiv2\left(mod7\right)\)

\(\Rightarrow927309^{10^2}\equiv2\left(mod7\right)\left(2\right)\)

Ta lại có: \(27309\equiv2\left(mod7\right)\)

\(\Rightarrow27309^{10^n}\equiv2^{10^n}\left(mod7\right)\)

\(2^{10^n}=2.2^{10^n-1}\equiv2\left(mod7\right)\left(3\right)\)

Từ (1), (2), (3) ta có

\(A=\left(2730^{10}+927309^{10^2}+27309^{10^3}+...+27309^{10^{10}}\right)\equiv\left(0+2+2+...+2\right)\equiv18\equiv4\left(mod7\right)\)

Vậy số dư của A cho 7 là 4

20 tháng 11 2018

bạn ơi cho mk hỏi đoạn này là sao ak ?
2.210^n-1 đồng dư với 2(mod7)

22 tháng 11 2017

vì achia 6 dư 4

=> a\(⋮\)2

=> a+8\(⋮\)15 và 2

=>a+18\(⋮\)30

=> a chia 30 dư 30-18=12

cho mik tích nha

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
27 tháng 10 2016

a=52      a:30 dư 22   tích cho mk nha

27 tháng 10 2016

Bạn hãy giúp mình làm bài giải chi tiết nhé 

22 tháng 1 2017

Số dư là 0